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Abstract

The paper takes up posterior analysis of the stochastic frontier model with random
effects when panel data is available. Available treatments of the model result in a likelihood
function that is highly nonlinear and, as a result, applied researchers prefer to use fixed
effect formulations when efficiency measurement is sought from panel data. The methodology
is based on Gibbs sampling. It is shown how posterior distributions of parameters can be

derived and how firm-specific efficiency measures can be computed.

1. Introduction

Starting with the pioneering work of Aigner, Lovell and Schmidt (1977), the
use of stochastic frontier models has a long-standing tradition in econometrics
and such models have been used with success in numerous applications. See
Bauer (1990) and Greene (1993) for a survey of the literature. Well known as-
sumptions about the distribution of the one-sided disturbance term in stochastic
frontier models, include the exponential of Aigner et al. (1977), the exponential
of Meeusen and van den Broeck (1977) and the truncated normal of Stevenson
(1980) which includes the half-normal as a special case.

When panel data is available, a number of possibilities open for the estima-
tion of stochastic frontier models, including fixed effect or random effect estim a-
tion. The major advantage of having panel data is that estimated firm-specific
efficiencies are consistent which is not the case in cross-section models. The
typical approach to frontier estimation with panel data is to use fixed effect es-
timation and then estimate inefficiency by taking the difference of each firm-
specific coefficient from its maximum value (Greene, 1980). Pitt and Lee (1981)
and Battese and Coelli (1988) have taken up maximum likelihood estimation of
the stochastic frontier model with random effects.

Possibly because of the complexity of the likelihood function, applied re-
searchers tend to rely on fixed effect formulations. The purpose of this paper is
to present posterior analysis of the random effect frontier model organized
around Markov Chain Monte Carlo simulation techniques, especially the Gibbs
sampler. Posterior distributions of parameters and efficiency measures can be
derived routinely using this technique.
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2. The Model

Consider the stochastic frontier model for a (possibly unbalanced) panel data
set

Y= X,izﬁ + Vie— UY; (1)
t=1.,T;, i=1,.,N

where y, is typically the log of output, x, isa kx1 vector of explanatory vari-
ables, f is a kx1 vector of parameters, v, is a two-sided error term represent-

ing random noise and u; is a positive random variable representing technical

inefficiency. In order to exploit the panel structure of the data, technical ineffi-
ciency is assumed time invariant. It is possible, however, to add time effects in
order to separate technical inefficiency from factors, which are time varying.
Regarding the error terms the following assumptions are introduced.

1. vy is N(0, o.)
2. u;isN(0, o7)
3. v, and u, are independent as well as independent of x;,.

The likelihood function of the model has been presented by Pitt and Lee
(1981) and Battese and Coelli (1988) as
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where A= 05 / GVZ and ¢, =y, —X;f . To make use of a Gibbs sampling approach

it

to posterior inference we notice that the joint distribution of y, and u; is given by
f(yib ui:ﬂa Oy, OV7y7 X) = f]\ll (yit:x,it — U 05 )fN(ui:Oy 05 ) 1(1’“ > 0) (3)

where ka (x'n,2) denotes the k —variate normal distribution with mean
and covariance matrix X, and 1(4) denotes the indicator function of event A4 .

If we treat the u;’s as parameters whose prior is a truncated normal the aug-
mented likelihood function of the model becomes



Likelihood Analysis of Random Effect Stochastic Frontier Models with Panel Data 37

N
L(B.o,,0,;y.X)=[1fy (v: | X:B-1;17,07 ) fy (1; 10,0, ) =

i=1

07T+ g {— (y-Xp+U)' (zy -Xp+ U)}OZ:(NH)
20

4

4

u'u
exp(——)

20°
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N
y=[y, Y, .yn] is NTxk where T=)T,, X=/[X| X} .. X}y /' is NTxk,
i=1
u=/u; u, ..uy/ is the Nx1 vector of inefficiencies, and U=e®u, with
e=/17 17 .. 1% [',and 1, denotes the unit vector in R".

To proceed with posterior analysis, a prior is chosen that is flat for § but
inverted gamma for the variance parameters.

p(B,,0,) o< 7 expy ‘f% Jo, 5 exp( ‘5*22 6)
o

OV u

The posterior distribution may be analyzed using the Gibbs sampler. The
Gibbs sampler (Gelfand and Smith, 1989, Tanner and Wong, 1987 and Tierney,
1994) is an iterative scheme that generates a set of parameter draws

{,8(“ ,aum ,Uv(i) ;i=1,., M} which converge in distribution to the posterior. These
parameter draws are generated by drawing successively from the posterior con-
ditional distribution of 8}o,,0,,u,y,X , the posterior conditional distribution of
0,1B,0,,u,y,X and so forth. For a posterior distribution T(0 | D) where D
denotes the data and 6 denotes the entire parameter vector, the Gibbs sampler
starts from a given initial parameter vector 0(0) and produces a set of parameter

draws {0(i) i=1,...,M} that converge in distribution to 71(0 | D) under fairly
weak conditions (Roberts and Smith, 1994). These random drawings are pro-
duced as follows. For i=1,...,M:

Draw 0, from w(0,! 0,4, D),

draw 0,” from (0, ! 0, D),

draw 0O k(i) from ﬂ(e | e_k(i'l) ,D)

where 9_i= [9 1 eee ei_l 6 i1 ee- 9 k ]
The Bayesian approach to frontier models is presented in van den Broeck et
al (1994) and Gibbs sampling in frontier models has been initiated with Koop et
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al (1995), see also the review paper by Osiewalski and Steel (1998). In this
model, these posterior conditional distributions have standard forms from which
random number generation is particularly easy. The procedure is described next.

3. Conditional Distributions for Gibbs Sampling

The conditional distribution of f is given by

Blo,.0,,u,y,X N ((XX)"'X(y+U),0.(X'X)™") (6)

The conditional distributions of the variance parameters may be reduced to

xz as usual and are given by the following.

g, +(y+U-XB) (y+U-Xp)

2
o

vV

“2*(NT+N,) (7)

and

q,+u'u
=y’ (N+N,) 8)

u

from which random number generation is straightforward. Contrary to the
methods of Pitt and Lee or Battese and Coelli (1988) no reparametrization is
needed in order to obtain positive estimates of the variance parameters. Draw-
ing these parameters as above automatically guarantees that they are positive.

Finally, the conditional posterior distribution of u; is a truncated normal.
To see this, notice that because of the independence of v, ’s across i this pos-
terior conditional can be expressed as

X PB+ul,) (v, —XP+ul 2
(YL l[‘)) i I)QYt lﬁ i 7])_147,2} 1(”120) (9)
20 20,

v
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This apparently reduces to a normal distribution truncated to the positive
half line. Its moments are given by

To’
E(ui IB)Gu’GWy’X):#hi 10
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and
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Var(u, \,0,,0,,y,X) = (12)

2
To, +o

Drawings from this truncated normal distribution can be realized by using a
special acceptance method described in Tsionas (2000).

4. Marginal Posterior Distributions and Efficiency Measurement

For a general kernel posterior distribution p(6{D) where 6 © c R isa
k — dimensional parameter vector, marginal posterior distributions of any subset
of the parameters may be derived routinely by utilizing the Gibbs sampling

01
draws. If the parameter vector can be partitioned as 6 ={ } the marginal pos-
02

terior distribution of the first component is given by
p(6,1D) o [ p(6)do, (13)

which may be approximated by

M
p(6,1D)c M™Y. p(6,.6;”) (14)
i=1
which is computed pointwise in 6, . The integration constant which makes the

above an exact density, may be computed using numerical integration, particu-
larly a Simpson rule which requires only that the function is available over a set
of ordinates.

To compute firm-specific efficiency measures, we can use (9), which gives
the conditional distribution of u; given the parameters and the data. The condi-

tioning with respect to the parameters is not helpful, and this uncertainty must
be eliminated in standard Bayesian fashion by integrating the parameters out of
this conditional distribution. Therefore we obtain the distribution

p(u; 1y, X) :IP(”i iB,0,,0,,y,X)dpdo,do, <
X Brul, ) (y X ptul 2 (15)
(Yz IB i 7;;(2Yl zB i T')—zu’z}l(ulZO)dBdaudov
o

v u

j exp{—

This gives the posterior distribution of the inefficiency component condition-
ally only on the observed data. Efficiency may be defined as the random variable
n=ep(-u,), 0<r <1 (16)

The distribution of the efficiency measure conditionally on the observed data
may be derived from (15) by using a change of variables, namely
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p(r1v.X) = p,(~logr,\y,X)r”', 0<r, <1 (17)

A useful efficiency measure is the expected value of this distribution, which
may be computed as

1 1
E(r,1y,X) = [ p(r 1y, X)dr, = [ p,(~logr; 1 y,,x, dr, (18)
0 0
To evaluate (15) we apply the technique in (14) and average over the Gibbs
draws to obtain the following approximation:
p(ui : y’X) =

(Yi_XiB(”+ui(j)1T),(Yi_Xiﬁ(j)+ui(j)lT) uiZ(j) ” (19)
500 ' - S w7 20)

M
M > expi-
j=1 20

where the superscript (j) indicates that the parameter is evaluated at the j th

Gibbs draw.

Alternatively, we may notice that (10) provides the conditional expectation
of inefficiency component given the parameters and data. Therefore, we can
apply the technique in (14) to obtain average inefficiency as a sum of (10) with
respect to the parameter draws

Conclusions

The present paper derived the posterior distribution of parameters in a sto-
chastic frontier model with random effects, when panel data is available. Al-
though the posterior distribution is highly nonlinear, specialized methods can be
used to obtain random draws that converge in distribution to the posterior.
These methods are organized around Gibbs sampling with data augmentation.
The method can be used to obtain exact, finite sample posterior distributions of
parameters, as well as firm-specific efficiency mesures.

References

Aigner, D., C.A. Knox-Lovell, and P. Schmidt, 1977, «Formulation and estima-
tion of stochastic frontier production function models», Journal of
Econometrics 6,21-37.

Battese, G. and T. Coelli, 1988, «Prediction of firm-level technical efficiencies
with a generalized frontier production function and panel data», Journal
of Econometrics 38, 387-399.

Van der Broeck, J., G. Koop, J. Osiewalski, and M.F.J. Steel, 1994, «Stochastic
frontier models: A Bayesian perspective», Journal of Econometric 61,
273-303.

Gelfand, A.E., and A.F.M. Smith, 1989, «Sampling based approaches to calcu-
lating marginal densities», Journal of the American Statistical Association
85, 398-409.



Likelihood Analysis of Random Effect Stochastic Frontier Models with Panel Data 41

Greene, W., 1980, «On the estimation of a flexible frontier production model»,
Journal of Econometrics 13, 101-115.

Greene, W.H., 1993, The econometric approach to efficiency analysis, in
H.O.Fried, C.AK. Lovell and S.S. Schmidt (eds), The measurement of
productive efficiency: Techniques and applications, Oxford: Oxford
University Press.

Koop, G., M.F.J. Steel, and J. Osiewalski, 1995, «Posterior analysis of stochastic
frontier models using Gibbs sampling», Computational Statistics 10, 353-
373.

Meeusen W. and J. van den Broeck, 1977, «Efficiency estimation from Cobb-
Douglas production functions with composed error», International Eco-
nomic Review 18, 435-444.

Osiewalski, J. and ML.F.J. Steel, 1998, «Numerical tools for the Bayesian analysis
of stochastic frontier models», Journal of Productivity Analysis 10, 103-
117

Pitt, M. and L. Lee, 1981, «The measurement and sources of technical ineffi-
ciency in the Indonesian weaving industry», Journal of Development
Economics 9, 43-64.

Roberts, C.O., and A.F.M. Smith, 1994, «Simple conditions for the convergence
of the Gibbs sampler and Hastings-Metropolis algorithms.» Stochastic
Processes and their Applications 49, 207-216.

Tanner, M.A., and W.H. Wong, 1987, «The calculation of posterior distributions
by data augmentation» (with discussion), Journal of the American Statis-
tical Association 82, 528-550.

Tierney, L., 1994, «Markov chains for exploring posterior distributions» (with
discussion), Annals of Statistics 22, 1701-1762.

Tsionas, E.G., 2000, «Full likelihood inference in normal-gamma stochastic
frontier models», Journal of Productivity Analysis 13, 179-201.



