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Abstract: 

 
Purpose: Volatility spillovers among leading U.S. companies have important implications 

for portfolio diversification, systemic stability, and risk management. The presented study 

investigated whether technology-driven shocks transmit beyond their own sector to influence 

consumer and financial firms. Eleven large U.S. companies (AAPL, AMZN, PEP, TSLA, 

MSFT, META, AVGO, NVDA, ADBE, NDAQ, and GOOGL) were examined in order to 

identify the size, direction, and significance of firm-to-firm volatility linkages. 

Design/Methodology/Approach: Daily data covering the period 2015-2024 were used. 

Returns and thirty-day rolling standard deviations were calculated. Pairwise Granger 

causality tests were applied to the volatility series. Significant relations were collated into 

spillover matrices to visualize the propagation of shocks across firms. 

Findings: Analysis revealed that volatility spillovers are concentrated within the technology 

sector, with META, MSFT, and NVDA identified as key transmitters. Cross-sector effects 

were also observed, most notably spillovers from technology into consumer and financial 

firms such as PEP and NDAQ. These results indicate that sector-based diversification 

strategies may underestimate true exposure to volatility. 

Practical Implications: The results may be of interest to investors, risk managers, and 

policymakers concerned with portfolio construction, stress testing, and systemic risk 

oversight. The evidence suggests that firm-level spillovers should be explicitly incorporated 

into investment and regulatory frameworks. 

Originality/Value: The study contributes to the literature by shifting the spillover analysis 

from markets and sectors to a firm-level perspective within the U.S. mega-cap universe. The 

results fill an empirical gap regarding the identification of specific companies that act as 

volatility transmitters across sectors. The findings provide recommendations for enhancing 

portfolio risk controls and monitoring systemic vulnerabilities in equity markets. 
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1. Introduction 

 

The interconnectedness of financial markets is reflected in the transmission of 

shocks across firms and sectors and has been widely studied in the literature. 

Volatility, as a measure of uncertainty, not only captures the risk associated with 

individual securities but also represents systemic linkages that affect overall market 

stability (Kumar, 2013; Jebran and Iqbal, 2016; Gamba-Santamaria et al., 2019).  

 

Previous studies documented volatility transmission both within and across equity 

markets and between equities and other asset classes. For example, Harris and 

Pisedtasalasai (2006) analyzed return and volatility spillovers between large and 

small stocks in the UK. Mikhaylov (2018) examined the volatility spillover effect 

between stock and exchange rates in oil-exporting countries. Malik (2021) 

investigated volatility interactions between exchange rates and stock returns under 

volatility shifts. More recently, Khan (2023) reported bidirectional volatility 

spillovers between India and BRICS countries. 

 

A number of contributions emphasized the intensification of spillovers during crisis 

episodes. Gamba-Santamaria et al. (2019) highlighted that global spillovers peaked 

during the 2007–2009 financial crisis. Xu et al. (2019) confirmed asymmetric 

volatility spillovers between oil and stock markets in China and the United States. 

Baruník et al. (2016) presented evidence of asymmetric volatility spillovers across 

U.S. petroleum markets. Furthermore, sectoral studies have demonstrated that 

technology and consumer-related stocks play a crucial role in transmitting shocks 

due to their market capitalization and central role in innovation (Geng et al., 2021; 

BenSaïda et al., 2018). 

 

Despite the breadth of existing research, the firm-level dimension of volatility 

spillovers within U.S. mega-cap companies has not been explored in sufficient 

detail. Most studies focus on aggregate indices, cross-country panels, or sectoral 

groups, while less attention is devoted to identifying which firms act as key 

transmitters of volatility within the U.S. equity market. 

 

The present study addresses this gap by analyzing volatility spillovers among eleven 

U.S. firms—AAPL, AMZN, PEP, TSLA, MSFT, META, AVGO, NVDA, ADBE, 

NDAQ, and GOOGL—covering the period 2015-2024. The analysis is conducted 

using thirty-day rolling standard deviations of daily returns and pairwise Granger 

causality tests.  

 

The empirical results are summarized through spillover matrices that highlight the 

network of statistically significant firm-to-firm linkages. The aim of the article is to 

identify the companies that serve as transmitters of volatility across and within 

sectors, and to evaluate the implications of such spillovers for portfolio 

diversification, systemic stability, and risk management. 
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2. Literature Review 

 

Research on volatility spillovers has developed extensively over the last two 

decades, emphasizing both cross-country and sectoral interdependencies. Early 

studies highlighted that volatility transmission occurs not only within equity markets 

but also across asset classes. Harris and Pisedtasalasai (2006) documented that 

volatility of large-cap stocks significantly influences small-cap stocks in the United 

Kingdom.  

 

Kumar (2013) confirmed strong integration among the IBSA markets, with bi-

directional spillovers between stock prices and exchange rates. Korkmaz et al. 

(2012) examined CIVETS countries and observed relatively low but present 

volatility spillovers, while Mukherjee and Mishra (2010) established the presence of 

return spillovers between India and its Asian counterparts. 

 

Crisis episodes received special attention in the literature. Gamba-Santamaria et al. 

(2019) found that global stock market volatility spillovers peaked during the 2007–

2009 financial crisis. Baruník et al. (2016) identified asymmetric volatility spillovers 

in U.S. petroleum markets during the same period. BenSaïda et al. (2018) confirmed 

that volatility transmission across global financial markets intensifies in times of 

instability, whereas Gamba-Santamaria et al. (2017) showed that Brazil serves as a 

primary volatility transmitter to other Latin American markets. Xu et al. (2019) 

extended this perspective by identifying asymmetric volatility spillovers between oil 

and stock markets in China and the United States. 

 

Recent contributions have focused on sectoral and firm-specific dimensions. 

Mikhaylov (2018) demonstrated that exchange rates and equities in oil-exporting 

countries are linked through significant volatility spillovers. Malik (2021) showed 

that U.S. equity volatility influences exchange rate dynamics. Geng et al. (2021) 

provided evidence of high volatility spillovers in the renewable energy sector, 

underscoring the role of negative news in amplifying risk. Khan (2023) examined 

BRICS countries and confirmed bidirectional volatility transmission between India 

and other emerging markets. 

 

Although the literature demonstrates robust evidence of volatility spillovers across 

countries, markets, and sectors, relatively little attention has been paid to identifying 

spillovers at the firm level within the U.S. equity market. Most prior research has 

focused on aggregate indices or broad sectors, while the transmission of volatility 

among individual firms—especially U.S. mega-cap companies—remains 

underexplored.  

 

The present study addresses this gap by investigating firm-level volatility spillovers 

among eleven major U.S. companies across the technology and consumer sectors, 

using Granger causality and spillover matrix approaches to identify the main 

transmitters of volatility within the U.S. market. 
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Table 1. Selected studies on volatility spillovers (methods, regions, periods) 
Authors Year Region 

Studied 

Variables 

Used 

Main Finding Method Used Data 

Period 

Manish 

Kumar 

2013 IBSA 

(India, 

Brazil, SA) 

Returns 

& 

Volatility 

Spillovers 

Strong 

integration, bi-

directional 

spillovers 

VAR, 

GARCH 

2000–

2011 

Jebran & 

Iqbal 

2016 Asia 

(Pakistan, 

India, etc.) 

Volatility Significant 

bidirectional & 

unidirectional 

spillovers 

GARCH 1999–

2014 

Gamba-

Santamaria et 

al. 

2019 Global 

(USA, UK, 

China, 

etc.) 

Stock 

Market 

Volatility 

Peak spillovers 

in 2007–2009 

crisis 

DCC-GARCH 1996–

2017 

Mikhaylov 2018 Russia & 

Brazil 

Stock & 

Exchange 

Rate 

Stronger 

spillovers post-

2009 crisis 

FIGARCH 2009–

2017 

Harris & 

Pisedtasalasai 

2006 UK Large & 

Small 

Stock 

Volatility 

Large stocks 

predict small 

stocks 

AR-GJR-

GARCH-M 

1986–

2002 

Baumöhl et 

al. 

2017 40 Global 

Markets 

Stock 

Market 

Volatility 

Higher 

spillovers in 

nearby markets 

Granger 

Causality 

2006–

2014 

Malik 2021 USA USD & 

Stock 

Market 

Volatility 

US stocks 

influence USD 

exchange rate 

Bivariate 

GARCH, 

ICSS 

2003–

2018 

Korkmaz et 

al. 

2012 CIVETS 

(Colombia, 

etc.) 

Stock 

Returns 

& 

Volatility 

Low spillover, 

interdependence 

observed 

GARCH, 

Causality 

2002–

2010 

Xu et al. 2019 China & 

USA 

Oil & 

Stock 

Market 

Volatility 

Asymmetric 

spillovers 

Spillover 

Index 

2007–

2016 

Imran Khan 2023 BRICS Volatility Bidirectional 

spillover 

between India 

and BRICS 

Granger 

Causality 

2013–

2021 

Geng et al. 2021 Global 

(New 

energy 

companies) 

Return & 

Volatility 

Spillovers 

High spillovers, 

negative news 

contributes to 

risk 

Generalized 

VAR 

decomposition 

2006–

2019 

Mukherjee & 

Mishra 

2010 India & 

Asia 

Stock 

Market 

Volatility 

Bi-directional 

return spillovers 

GARCH, 

Granger 

Causality 

1997–

2008 
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Imran Khan 2021 Emerging 

Market 

Stock 

returns 

Volatility 

spillover from 

India to BRICS 

VAR, Granger 

Causality, 

DCC-GARCH 

2003–

2018 

Baruník et al. 2016 USA US Stock 

Sector 

Volatility 

Asymmetric 

volatility 

spillovers 

Spillover 

Index 

2004–

2011 

Ahmed 

BenSaïda et 

al. 

2018 US, UK, 

France, 

etc. 

Volatility Increased 

spillovers 

during financial 

crises 

Variance 

decomposition 

2001–

2017 

Gamba-

Santamaria et 

al. 

2017 Latin 

America & 

USA 

Stock 

Returns 

& 

Volatility 

Brazil 

transmits, 

others receive 

spillovers 

Spillover 

Index, DCC-

GARCH 

2003–

2016 

Source: Adapted from Kumar (2013); Jebran & Iqbal (2016); Gamba-Santamaria et al. 

(2019); Mikhaylov (2018); Harris & Pisedtasalasai (2006); Lyócsa, Výrost & Baumöhl 

(2019); Korkmaz, Çevik & Atukeren (2012); Xu et al. (2019); Khan (2023); Mukherjee & 

Mishra (2010); Baruník et al. (2016); Gamba-Santamaria et al. (2017); Malik (2021); 

BenSaïda et al. (2018); Geng et al. (2021). 

 

3. Data and Methodology 

 

3.1 Data 

 

The empirical analysis uses daily closing prices for eleven U.S. companies—Apple 

(AAPL), Amazon (AMZN), Alphabet Class A (GOOGL), Adobe (ADBE), 

Broadcom (AVGO), Meta Platforms (META), Microsoft (MSFT), Nasdaq (NDAQ), 

NVIDIA (NVDA), PepsiCo (PEP), and Tesla (TSLA)—sourced from Yahoo 

Finance.  

 

The sample spans 3 January 2015 to 15 October 2024. Logarithmic returns were 

computed as , yielding 2,462 observations per firm. Volatility 

was proxied by the thirty-day rolling standard deviation of daily returns, producing 

2,461 observations due to the moving window. Descriptive statistics for returns and 

volatilities are reported in Table 1 and Table 2, respectively. 

 

3.2 Econometric Approach 

 

Pairwise Granger causality tests were applied to the volatility series of each firm pair 

in order to examine predictive linkages. The null hypothesis states that past values of 

volatility from firm i do not provide additional explanatory power for the volatility 

of firm j beyond the lags of firm j itself. Wald χ² statistics and corresponding p-

values were computed, with statistical significance evaluated at the 10% level (p < 

0.10). To provide a synthetic representation of the results, statistically significant 

relationships were collated into spillover matrices, where the row firm indicates the 

volatility transmitter and the column firm denotes the recipient. 
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Pairwise Granger tests involve many hypotheses. Reported p-values are unadjusted 

and should be interpreted as exploratory evidence of predictability rather than 

definitive inference. To reduce over-interpretation, our discussion emphasizes 

stronger links (p≤0.05), while full results at p<0.10 are reported for transparency. 

 

Lag selection: For each pairwise VAR used in the Granger tests, we evaluated lag 

lengths  using the Akaike (AIC) and Schwarz/Bayesian (BIC) 

information criteria on the volatility series. Both criteria selected short lags, with 

L=2 the modal choice across pairs. To ensure comparability across tests, we fixed 

the lag length at L=2 for all pairs (yielding Wald tests with df=2). 

 

Stationarity and preprocessing: Because rolling-window volatility can be persistent, 

we tested each volatility series for stationarity using ADF (unit-root null) and KPSS 

(stationarity null) tests. Prior to estimation, series were standardized to z-scores 

(demeaned and scaled by their sample standard deviation) to harmonize units across 

firms. Where ADF/KPSS diagnostics disagreed at the margin, we relied on the joint 

evidence and confirmed that VAR residuals passed serial-correlation checks 

 

All statistical analyses were conducted in Stata 18 (StataCorp LLC). 

 

4. Empirical Results 

 

The empirical analysis begins with an examination of descriptive statistics and 

graphical representations of the underlying data. Figures 1-3 present the daily 

closing prices, logarithmic returns, and thirty-day rolling volatilities for the eleven 

selected companies over the sample period 2015-2024. The plots illustrate the long-

term upward trends in technology stocks, short-term fluctuations in returns with 

evidence of volatility clustering, and periods of heightened volatility corresponding 

to episodes of market stress.  

 

Figure 1. Daily closing prices of eleven U.S. companies from January 2015 to 

October 2024 
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Source: Stata 18 & Co. 

 

Figure 2. Daily log returns of eleven U.S. companies from January 2015 to October 

2024 

 
 

 
Notes: Returns are computed as first differences of logarithmic prices. The plot reveals 

short-term fluctuations, fat tails, and volatility clustering typical of equity returns. 

Source: Stata 18 & Co. 
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Figure 3. Thirty-day rolling volatility of eleven U.S. companies from January 2015 

to October 2024 

 
 

 
Source: Stata 18 & Co 

 

4.1 Descriptive Statistics 

 

Table 1 reports summary statistics for daily returns. The results indicate that mean 

returns are close to zero, consistent with the characteristics of high-frequency equity 

data.  

 

Standard deviations vary across firms, with NVDA and TSLA exhibiting the highest 

return volatility, while PEP displays the lowest. Minimum and maximum values 

confirm the presence of extreme observations, reflecting market turbulence during 

crisis episodes. 
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Table 1. Descriptive statistics for returns 
Variable Obs Mean Std. Dev. Min Max 

return AAPL 2462 .0009 .0181 -.1377 .1131 

return AMZN 2462 .001 .0206 -.1514 .1324 

return GOOGL 2462 .0007 .0179 -.1236 .1506 

return ADBE 2462 .0008 .0209 -.1838 .1631 

return META 2462 .0008 .024 -.3064 .2093 

return AVGO 2462 .0012 .0229 -.2219 .1471 

return MSFT 2462 .0009 .0172 -.1595 .1329 

return NDAQ 2462 .0006 .0151 -.1257 .1299 

return NVDA 2462 .0023 .0307 -.2079 .2637 

return PEP 2462 .0003 .0118 -.1214 .1217 

return TSLA 2462 .0011 .0356 -.2365 .1815 

Source: Author’s calculations. 

 

Table 2 presents descriptive statistics for the thirty-day rolling volatility series. The 

results show that volatility is heterogeneous across firms. Technology firms such as 

NVDA and TSLA demonstrate higher mean volatility and wider ranges, while 

consumer staples such as PEP exhibit lower and more stable volatility patterns. 

These observations are consistent with sectoral risk differences and confirm the 

suitability of the sample for spillover analysis. 

 

Table 2. Descriptive statistics for volatility 

Variable Obs Mean Std. Dev. Min Max 

AAPL volatility 2461 .0164 .0076 .0049 .0668 

AMZN volatility 2461 .0188 .0085 .0018 .0485 

GOOGL volatility 2461 .0164 .0072 .0039 .057 

ADBE volatility 2461 .0186 .0094 .0038 .0761 

META volatility 2461 .021 .0117 .0019 .0753 

AVGO volatility 2461 .021 .0095 .0046 .094 

MSFT volatility 2461 .0155 .0077 .0039 .0712 

NDAQ volatility 2461 .0133 .0071 .0031 .0742 

NVDA volatility 2461 .0282 .0118 .0003 .0875 

PEP volatility 2461 .0101 .0062 0 .0693 

TSLA volatility 2461 .0327 .0136 .0105 .0971 

Source: Author’s calculations. 

 

4.2 Granger Causality Tests 

 

Table 3a and Appendix Tables A.1–A.10 report pairwise Granger-causality results 

for volatility (Wald χ², df=2). Several statistically significant predictive linkages 

emerge. For AAPL as the dependent series, MSFT, NDAQ, and PEP significantly 

Granger-cause AAPL volatility (p = 0.013, 0.014, and 0.004). META appears as a 

transmitter toward AMZN, GOOGL, and ADBE, while cross-sector effects are 

evident with PEP predicting the volatilities of MSFT, AVGO, and NVDA.  
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Overall, the results reveal a network of firm-to-firm spillovers concentrated in 

technology, with notable links to consumer and financial firms. Using p<0.10 as a 

screening threshold and emphasizing p≤0.05 for interpretation, we find a 

technology-centered spillover network with several cross-sector bridges (see Table 

4a). Links with p∈(0.05, 0.10) are viewed as suggestive and hypothesis-generating. 

 

  

Note: The null hypothesis is that past volatility of the predictor does not help predict 

the dependent firm’s volatility beyond the dependent’s own lags. Values with p < 

0.10 are treated as significant (direction is row → column). 

 

Tables 3a (exemplar) and A1–A10 (Appendix) report pairwise Granger-causality 

results for volatility (Wald χ², df=2). Several statistically significant predictive 

linkages emerge at p<0.10. For AAPL as the dependent series, MSFT, NDAQ, and 

PEP significantly Granger-cause AAPL volatility (p=0.013, 0.014, and 0.004). 

Within technology, we find dense bidirectional clusters; cross-sector links are 

present as well—most notably PEP → MSFT/AVGO/NVDA. 

 

Table 3a. Granger causality for AAPL volatility (dependent: AAPL; df = 2) 
Predictor (row → AAPL) χ² P Sig. 

PEP volatility 11.213 0.004 Yes 

MSFT volatility 8.762 0.013 Yes 

NDAQ volatility 8.487 0.014 Yes 

META volatility 4.23 0.121   

TSLA volatility 3.184 0.204   

AMZN volatility 2.21 0.331   

AVGO volatility 2.206 0.332   

ADBE volatility 1.992 0.369   

GOOGL volatility 0.627 0.731   

NVDA volatility 0.54 0.763   

Note: Lag length fixed at L=2 for comparability. Full per-firm results appear in Appendix A, 

Tables A1–A10. Reported p-values are unadjusted. 

Source: Author’s calculations. 

 

Taken together, the results from Table 3a and Appendix Tables A.1–A.10 indicate 

notable volatility interdependencies across the eleven companies. Several robust 

linkages appear within the technology sector: for example, ADBE is significantly 

influenced by META, AVGO, and NVDA, while META itself is affected by 

GOOGL, ADBE, MSFT, and PEP. Microsoft’s volatility shows strong connections 

to NDAQ and PEP, and NVDA is significantly driven by PEP.  

 

Cross-sector interactions are also evident: PEP volatility is significantly influenced 

by AMZN, META, AVGO, MSFT, and NVDA, while AAPL volatility is shaped by 

both technology peers (MSFT, NDAQ) and the consumer staple PEP. Tesla’s 

volatility is linked to META and NVDA, underscoring the influence of major 

technology firms on growth-sensitive stocks. 
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Figure 4. Granger Causality into NVDA Volatility (Wald χ², df=2; higher bars = 

stronger evidence 

Source: Own elaboration. 

 

Overall, these findings suggest that while many firms exhibit independent volatility 

dynamics, certain companies—particularly META, MSFT, PEP, and NVDA—serve 

as important transmitters of shocks. AAPL volatility, for instance, is largely 

independent of most firms, yet shows meaningful linkages with MSFT, NDAQ, and 

PEP, highlighting the presence of both intra-technology spillovers and cross-sector 

connections with consumer staples. 

 

This highlights the presence of both intra-technology spillovers and meaningful 

cross-sectoral linkages, with practical implications for risk management, 

diversification, and monitoring systemic vulnerabilities. 

 

4.3 Spillover Matrices 

 

Tables 4a–4b summarize the statistically significant spillover directions in matrix 

form. The matrices highlight the presence of concentrated transmission around key 

technology firms such as META, MSFT, and NVDA, while also capturing notable 

cross-sector connections, most prominently between technology firms and the 

consumer staple PEP. The results confirm that certain companies function as central 

nodes in the volatility network, transmitting shocks across multiple firms and 

sectors. 

 

The evidence suggests that volatility in U.S. mega-cap companies cannot be 

analyzed in isolation. Instead, firm-to-firm interdependencies must be considered, 

particularly those emanating from technology leaders, as they reduce the 
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effectiveness of traditional sector-based diversification strategies and create potential 

channels for systemic risk propagation. 

 

Table 4a. Spillover Matrix Among Individual Stocks 
 

 AAPL AMZN GOOGL ADBE MET

A 

AVGO MSFT NDA

Q 

NVDA PEP TSLA 

AAPL  0.331 0.731 0.369 0.121 0.332 0.013 0.014 0.763 0.004 0.204 

AMZN 0.512  0.115 0.451 0.000 0.883 0.165 0.503 0.972 0.096 0.580 

GOOGL 0.872 0.355  0.024 0.383 0.223 0.764 0.399 0.881 0.126 0.013 

ADBE 0.399 0.413 0.676  <0.00

1 

0.003 0.946 0.415 0.021 0.003 0.227 

META 0.255 0.169 <0.001 0.032  0.349 0.004 0.713 0.083 0.031 0.181 

AVGO 0.245 0.595 0.750 0.493 0.708  0.107 0.009 0.053 <0.00
1 

0.875 

MSFT 0.528 0.239 0.851 0.391 0.765 0.690  0.004 0.161 <0.00

1 

0.248 

NDAQ 0.402 0.209 0.823 0.330 0.190 0.033 0.005  0.170 0.065 0.415 

NVDA 0.545 0.288 0.706 0.556 0.332 0.143 0.832 0.740  <0.00
1 

0.878 

PEP 0.538 0.009 0.139 0.391 0.025 0.009 0.002 0.085 0.034  0.051 

TSLA 0.067 0.189 0.749 0.206 0.001 0.255 0.990 0.240 0.050 0.729  

Notes: Cells report p-values for Granger causality in volatility (row → column). Entries with 

p < 0.10 indicate significant spillovers. Diagonal entries are omitted. Given the number of 

pairwise tests, some rejections at p<0.10 may occur by chance. We therefore highlight 

p≤0.05 links in bold and treat p ∈ (0.05, 0.10) as suggestive. 

Source: Author’s calculations. 
 

Table 4b. Spillover Matrix Among Individual Stocks 

 
 AAPL AMZN GOOGL ADBE META AVGO MSFT NDA

Q 

NVD

A 

PEP TSLA 

AAPL  0.881 0.003 0.969 0.039 0.059 <0.001 0.018 0.575 0.157 0.028 

AMZN 0.414  0.291 0.474 <0.001 0.530 0.021 0.730 0.871 0.350 0.388 

GOOGL 0.461 0.870  0.438 0.461 0.194 0.083 0.211 0.569 0.265 0.385 

ADBE 0.046 0.192 0.680  0.028 0.187 0.162 0.211 0.010 0.003 0.080 

META 0.060 0.148 <0.001 0.138  0.251 0.288 0.882 0.148 0.295 0.171 

AVGO 0.013 0.135 0.631 0.973 0.552  0.003 0.035 0.377 <0.00

1 

0.387 

MSFT 0.428 0.378 0.494 0.987 0.139 0.163  0.099 0.774 0.003 0.197 

NDAQ 0.865 0.298 0.688 0.793 0.709 0.001 0.001  0.353 0.231 0.864 

NVDA 0.600 0.599 0.600 0.558 0.029 0.147 0.072 0.003  0.087 0.591 

PEP 0.273 0.633 0.037 0.344 0.299 <0.001 0.036 0.021 0.159  0.700 

TSLA 0.834 0.582 0.438 0.121 0.618 0.531 0.041 0.079 0.134 0.200  

Source: Author’s calculations. 
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4.3.1 Interpretation of Tables 4a–4b 

Using p<0.10 as the significance cut-off, the matrix paints a clear picture of a 

technology-centered network with a few powerful cross-sector bridges. Within tech, 

META, ADBE, AVGO, and MSFT are not isolated movers: META’s volatility 

helps forecast several peers—GOOGL, ADBE, MSFT, and even NVDA—signaling 

that shocks around social-media/advertising and AI compute spill rapidly across 

adjacent platforms and chips. ADBE also behaves like a hub, transmitting to META, 

AVGO, NVDA, and the consumer staple PEP; this is consistent with software-suite 

exposures that cut across both enterprise IT and supply chains. 

 

AVGO and MSFT add to the internal tech circulation (e.g., to NDAQ and PEP), 

while NDAQ, though a market-infrastructure firm, sends signals back into the tech 

complex (to AVGO and MSFT), suggesting a feedback loop between trading 

conditions and large-cap tech volatility. 

 

The most striking cross-sector conduit is PEP. Despite its staple profile, PEP’s 

volatility anticipates moves in multiple tech names (AMZN, META, AVGO, MSFT, 

NVDA) as well as NDAQ and TSLA. Interpreted economically, this points to a 

broad “macro/flows” channel: when defensive or cash-flow-stable names start to 

tremble, the tremor often reaches growth assets soon after.  

 

On the receiving side, AAPL’s volatility responds to MSFT, NDAQ, and PEP, 

underlining that even the largest single name is not insulated from tech-peer 

dynamics and market-wide conditions. TSLA, meanwhile, is especially sensitive to 

technology-driven shocks (notably from GOOGL and META), consistent with its 

growth-dependent risk profile. 

 

Equally informative are the absences: proposed narratives that GOOGL or AMZN 

transmit directly to NVDA are not supported at conventional levels here. Instead, 

NVDA’s notable incoming links arise via PEP and (more weakly) other tech 

senders, hinting that chipmaker volatility may be more exposed to broad 

demand/positioning pulses than to any single platform firm. Overall, the matrix 

depicts a dense tech core, a surprisingly influential consumer-staple bridge, and two-

way ties with market infrastructure—exactly the kind of configuration that can 

undermine naïve sector diversification and amplify system-wide swings when a few 

central nodes are hit. 

 

Table 4b extends the network with several additional transmitters. AAPL sends 

volatility to GOOGL (p=0.003), META (p=0.039), MSFT (p<0.001), and TSLA 

(p=0.028), underscoring its central role. AMZN influences META (p<0.001), while 

GOOGL affects PEP (p=0.037). Software exposures are broad: ADBE → META 

(p=0.028), NVDA (p=0.010), and PEP (p=0.003). Hardware–platform ties appear 

via AVGO → MSFT (p=0.003), and market infrastructure feeds back into tech with 

NDAQ → AVGO and NDAQ → MSFT (both p=0.001). We also observe NVDA → 

NDAQ (p=0.003). On the cross-sector side, PEP again emerges as a bridge, 
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transmitting to AVGO (p<0.001). Overall, Table 4b reinforces a tech-centered core 

with meaningful links to consumer staples and market infrastructure. 

 

Taken together, the evidence highlights the presence of both intra-technology 

spillovers and important cross-sector linkages. META, MSFT, NVDA, and PEP 

emerge as central transmitters of volatility, underscoring their systemic relevance 

within the network of U.S. mega-cap firms. These findings reinforce the importance 

of accounting for firm-level interdependencies when designing portfolio 

diversification strategies and monitoring systemic vulnerabilities in equity markets. 

 

5. Discussion 

 

The results of the empirical analysis indicate that volatility shocks are not confined 

to individual firms but propagate across the network of leading U.S. companies. The 

concentration of significant spillovers within the technology sector confirms the 

systemic role of firms such as META, MSFT, and NVDA. At the same time, the 

presence of cross-sector linkages, particularly those involving PEP and NDAQ, 

demonstrates that volatility transmission extends beyond sectoral boundaries and 

affects consumer staples and financial services. 

 

These findings have several implications. From the perspective of portfolio 

construction, reliance on sector-based diversification strategies may deliver less risk 

reduction than anticipated. Investors exposed to technology stocks may still be 

indirectly affected by shocks transmitted to consumer and financial firms. In 

addition, risk managers should incorporate firm-to-firm and cross-sector conditional 

dynamics into stress testing and hedging strategies, recognizing that key transmitters 

can amplify volatility across the market. 

 

The results also contribute to the broader literature on volatility transmission. 

Previous studies emphasized spillovers across countries, indices, or sectors (Kumar, 

2013; Gamba-Santamaria et al., 2019; Xu et al., 2019).  

 

The present evidence adds a firm-level dimension, highlighting the role of individual 

companies in shaping systemic vulnerabilities. By identifying specific transmitters, 

the analysis advances understanding of how volatility shocks originate and spread 

within U.S. equity markets. 

 

6. Limitations 

 

Several limitations of the present study should be acknowledged. First, the use of 

pairwise Granger causality tests restricts the analysis to bilateral relationships and 

does not fully account for higher-order interactions or the role of common factors 

influencing multiple firms simultaneously. Second, volatility is proxied by the thirty-

day rolling standard deviation of returns, which, while widely used, may not capture 

latent volatility states.  
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Alternative approaches such as multivariate GARCH specifications, realized 

volatility measures, or stochastic volatility models could provide additional depth. 

Third, the sample period spans both pre-crisis and post-crisis subperiods. Although 

this allows for a broad perspective, it may obscure structural changes in volatility 

dynamics. Formal structural-break analysis could refine inference by distinguishing 

between regime-dependent spillover patterns.  

 

The analysis entails numerous pairwise Granger tests, increasing the likelihood of 

false positives. We report unadjusted p-values and frame the findings as exploratory. 

Future work should implement false-discovery-rate or familywise-error controls 

(e.g., Benjamini–Hochberg or Bonferroni) and reassess which links remain 

significant under multiplicity correction. 

 

7. Conclusion 

 

The study provides empirical evidence of statistically significant volatility spillovers 

among eleven major U.S. firms during the period 2015–2024. The results 

demonstrate that spillovers are concentrated within the technology sector, with 

META, MSFT, and NVDA identified as key transmitters of volatility, and that 

cross-sector linkages extend these effects to consumer and financial firms such as 

PEP and NDAQ. These findings highlight the importance of monitoring firm-level 

interdependencies when designing portfolio diversification strategies and conducting 

systemic risk assessments. 

 

The analysis contributes to the literature by shifting the focus from aggregate indices 

and sectors to firm-level dynamics within the U.S. mega-cap universe. This 

perspective enhances the understanding of how shocks propagate across firms and 

provides practical insights for investors, risk managers, and policymakers. 

 

Future research should extend the scope beyond U.S. firms to incorporate cross-

country comparisons, particularly in emerging markets where institutional structures 

may generate different transmission mechanisms. Methodologically, the application 

of multivariate GARCH frameworks, network-based approaches, and structural-

break techniques could provide a more comprehensive assessment of volatility 

dynamics. Such extensions would deepen both academic inquiry and practical 

oversight of systemic vulnerabilities in financial markets. 
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Appendix:  

 

This study reports unadjusted p-values due to its exploratory scope. A formal false-

discovery-rate adjustment (Benjamini–Hochberg at q=0.10) and Bonferroni-type 

familywise controls are left for future extensions and will be provided upon request. 
 

Table A1. Granger causality Wald test results for AMZN volatility (dependent variable: 

AMZN) 

Hypothesis Predictor variable χ² df p-value 

AMZN_volatility AAPL volatility 1.338 2 0.512 

 GOOGL volatility 4.326 2 0.115 

 ADBE volatility 1.592 2 0.451 

 META volatility 104.410 2 <0.001 

 AVGO volatility 0.249 2 0.883 

 MSFT volatility 3.609 2 0.165 

 NDAQ volatility 1.374 2 0.503 

 NVDA volatility 0.057 2 0.972 

 PEP volatility 4.695 2 0.096 

 TSLA volatility 1.089 2 0.580 

Source: Author’s calculations. 

 

Table A2. Granger causality Wald test results for GOOGL volatility (dependent variable: 

GOOGL) 

Hypothesis Predictor variable χ² df p-value 

GOOGL_volatility AAPL volatility 0.274 2 0.872 

 AMZN volatility 2.073 2 0.355 

 ADBE volatility 7.474 2 0.024 

 META volatility 1.918 2 0.383 

 AVGO volatility 3.001 2 0.223 

 MSFT volatility 0.538 2 0.764 

 NDAQ volatility 1.839 2 0.399 

 NVDA volatility 0.254 2 0.881 

 PEP volatility 4.135 2 0.126 

 TSLA volatility 8.690 2 0.013 

Source: Author’s calculations. 

 

https://doi.org/10.1016/j.ribaf.2009.12.004
https://doi.org/10.1016/j.eneco.2019.01.002
https://finance.yahoo.com/
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Table A3. Granger causality Wald test results for ADBE volatility (dependent variable: 

ADBE) 

Hypothesis Predictor variable χ² df p-value 

ADBE_volatility AAPL volatility 1.838 2 0.399 

 AMZN volatility 1.770 2 0.413 

 GOOGL volatility 0.783 2 0.676 

 META volatility 16.629 2 <0.001 

 AVGO volatility 11.647 2 0.003 

 MSFT volatility 0.110 2 0.946 

 NDAQ volatility 1.761 2 0.415 

 NVDA volatility 7.751 2 0.021 

 PEP volatility 11.658 2 0.003 

 TSLA volatility 2.570 2 0.277 

Source: Author’s calculations. 

 

Table A4. Granger causality Wald test results for META volatility (dependent variable: 

META) 

Hypothesis Predictor variable χ² df p-value 

META_volatility AAPL volatility 2.736 2 0.255 

 AMZN volatility 3.554 2 0.169 

 GOOGL volatility 31.762 2 <0.001 

 ADBE volatility 6.866 2 0.032 

 AVGO volatility 2.107 2 0.349 

 MSFT volatility 11.174 2 0.004 

 NDAQ volatility 0.678 2 0.713 

 NVDA volatility 4.978 2 0.083 

 PEP volatility 6.961 2 0.031 

 TSLA volatility 3.419 2 0.181 

Source: Author’s calculations. 

 

Table A5. Granger causality Wald test results for AVGO volatility (dependent variable: 

AVGO) 

Hypothesis Predictor variable χ² df p-value 

AVGO_volatility AAPL volatility 2.812 2 0.245 

 AMZN volatility 1.039 2 0.595 

 GOOGL volatility 0.576 2 0.750 

 ADBE volatility 1.413 2 0.493 

 META volatility 0.692 2 0.708 

 MSFT volatility 4.477 2 0.107 

 NDAQ volatility 9.331 2 0.009 

 NVDA volatility 5.891 2 0.053 

 PEP volatility 22.749 2 <0.001 

 TSLA volatility 0.267 2 0.875 

Source: Author’s calculations. 

 

 

 

 



  Volatility Spillovers among Major U.S. Companies 

   

1090  

 

 

Table A6. Granger causality Wald test results for MSFT volatility (dependent variable: 

MSFT) 

Hypothesis Predictor variable χ² df p-value 

MSFT_volatility AAPL volatility 1.277 2 0.528 

 AMZN volatility 2.861 2 0.239 

 GOOGL volatility 0.322 2 0.851 

 ADBE volatility 1.877 2 0.391 

 META volatility 0.535 2 0.765 

 AVGO volatility 0.743 2 0.690 

 NDAQ volatility 10.843 2 0.004 

 NVDA volatility 3.656 2 0.161 

 PEP volatility 31.123 2 <0.001 

 TSLA volatility 2.790 2 0.248 

Source: Author’s calculations. 

 

Table A7. Granger causality Wald test results for NDAQ volatility (dependent variable: 

NDAQ) 

Hypothesis Predictor variable χ² df p-value 

NDAQ_volatility AAPL volatility 1.821 2 0.402 

 AMZN volatility 3.134 2 0.209 

 GOOGL volatility 0.389 2 0.823 

 ADBE volatility 2.216 2 0.330 

 META volatility 3.325 2 0.190 

 AVGO volatility 6.797 2 0.033 

 MSFT volatility 10.648 2 0.005 

 NVDA volatility 3.545 2 0.170 

 PEP volatility 5.464 2 0.065 

 TSLA volatility 1.757 2 0.415 

Source: Author’s calculations. 

 

Table A8. Granger causality Wald test results for NVDA volatility (dependent variable: 

NVDA) 

Hypothesis Predictor variable χ² df p-value 

NVDA_volatility AAPL volatility 1.213 2 0.545 

 AMZN volatility 2.486 2 0.288 

 GOOGL volatility 0.695 2 0.706 

 ADBE volatility 1.176 2 0.556 

 META volatility 2.208 2 0.332 

 AVGO volatility 3.896 2 0.143 

 MSFT volatility 0.370 2 0.831 

 NDAQ volatility 0.601 2 0.740 

 PEP volatility 31.475 2 <0.001 

 TSLA volatility 0.261 2 0.878 

Source: Author’s calculations. 
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Table A9. Granger causality Wald test results for PEP volatility (dependent variable: PEP) 

Hypothesis Predictor variable χ² df p-value 

PEP_volatility AAPL volatility 1.239 2 0.538 

 AMZN volatility 9.352 2 0.009 

 GOOGL volatility 3.950 2 0.139 

 ADBE volatility 1.880 2 0.391 

 META volatility 7.349 2 0.025 

 AVGO volatility 9.399 2 0.009 

 MSFT volatility 12.341 2 0.002 

 NDAQ volatility 4.921 2 0.085 

 NVDA volatility 6.765 2 0.034 

 TSLA volatility 5.958 2 0.051 

Source: Author’s calculations. 

 

Table A10. Granger causality Wald test results for TSLA volatility (dependent variable: 

TSLA) 

Hypothesis Predictor variable χ² df p-value 

TSLA_volatility AAPL volatility 5.417 2 0.067 

 AMZN volatility 3.328 2 0.189 

 GOOGL volatility 0.578 2 0.749 

 ADBE volatility 3.165 2 0.206 

 META volatility 13.092 2 0.001 

 AVGO volatility 2.731 2 0.255 

 MSFT volatility 0.021 2 0.990 

 NDAQ volatility 2.857 2 0.240 

 NVDA volatility 5.982 2 0.050 

 PEP volatility 0.632 2 0.729 

Source: Author’s calculations. 

 

 

 

 
 

 

 

  


