

European Research Studies Journal

Volume XXVII, Special Issue 2, 2024

 pp. 160-168

Chatbot to Support the Customer Service Process
 Submitted 18/02/24, 1st revision 16/03/24, 2nd revision 20/04/24, accepted 16/05/24

 Tomasz Smutek1, Marcin Marczuk2, Michał Jarmuł3,

Ewelina Jurczak4, Damian Pliszczuk5

Abstract:

Purpose: This article aims to discuss the potential benefits and challenges associated with

implementing chatbots in customer service. With their ability to automate tasks, answer

FAQs, and engage in conversations, chatbots offer unique opportunities for enhancing

customer service.

Design/Methodology/Approach: This article provides a comprehensive analysis of chatbots'

potential advantages, such as 24/7 availability, quick response times, cost reduction, and

increased customer engagement capacity. The challenges that must be addressed for

effective implementation are also highlighted.

Findings: The analysis indicates that chatbots can significantly enhance customer service by

offering immediate assistance, reducing wait times, and automating repetitive tasks. This

automation allows customer service agents to focus on more complex issues, improving

customer satisfaction and reducing operational costs.

Practical Implications: The practical implications include reducing the workload on human

agents, cost savings due to automation, and providing consistent and efficient customer

support at any time. Chatbots' scalability can help organizations meet customer demand

without expanding the support team.

Originality/Value: This article offers valuable insights into how chatbots can transform

customer service through automation and efficiency. It provides guidance on maximizing

chatbots' potential while identifying and addressing challenges that arise during

implementation.

Keywords: Chatbot, Customer Service Automation, RASA, Natural Language

Understanding, Machine Learning.

JEL codes: M15, M31, C45, D83, L81, L86.

Paper type: Research article.

1Corresponding Author: WSEI University , Lublin, Poland,

e-mail: Tomasz.Smutek@wsei.lublin.pl;
2University of Economics and Innovation in Lublin, Lublin, Poland,

e-mail: Marcin.Marczuk@wsei.lublin.pl;
3University of Economics and Innovation in Lublin, Lublin, Poland,

e-mail: Michal.Jarmul@wsei.lublin.pl;
4Wyższa Szkoła Biznesu - National Louis University, e-mail: ejurczak@wsb-nlu.edu.pl;
5Netrix , Lublin, Poland, e-mail: damian.pliszczuk@netrix.com.pl;

mailto:Tomasz.Smutek@wsei.lublin.pl
mailto:Marcin.Marczuk@wsei.lublin.pl
mailto:Michal.Jarmul@wsei.lublin.pl
mailto:ejurczak@wsb-nlu.edu.pl
mailto:damian.pliszczuk@netrix.com.pl

Tomasz Smutek, Marcin Marczuk, Michał Jarmuł, Ewelina Jurczak, Damian Pliszczuk

161

1. Introduction

This document presents an approach to creating a bot using the RASA tool (Mishra

et al., 2022). The first part describes the tool's functionality, and the next one

presents the concept of building a voice assistant using only open-source

components. The use of race allows you to create an engine and interfaces for the

chatbot, which can be extended with voice functionalities appropriately (Cieplak et

al., 2021).

Conversation-driven development (CDD) involves gathering user feedback to

refine and enhance AI assistants (Nichol, 2020). It serves as a fundamental best

practice for chatbot development. Crafting effective AI assistants is difficult since

users often ask unpredictable questions.

The core idea behind CDD is that in every conversation, users clearly express their

needs in their own words. Applying the CDD methodology throughout the bot

development process allows us to align the assistant with natural language and user

behavior. CDD encompasses the following activities:

• Make your assistant available to users as soon as possible.

• Review conversations regularly.

• Annotate messages and use them as NLU training data.

• Check that your assistant always behaves as you expect.

• Track when your assistant goes down and measure its performance over time.

• Define the procedure your assistant will use in case of unsuccessful calls.

• Of course, CDD is not a linear process, and as the bot is created and improved,

the same activities mentioned above are returned. The tool built for this

purpose is Race X, described briefly in the next chapter.

• In the early stages of bot development, it may seem that CDD has no role to

play - especially when we don't have any conversations in the history yet.

However, CDD activities can be implemented at the very beginning of bot

development.

• Review best practices for NLU data and history for details on creating training

data with CDD in mind.

• allow the bot to test users in advance.

CDD focuses on user feedback, so finding test users early is crucial. Test users

should be unfamiliar with the bot's inner workings, as they shouldn't be part of the

development team. Team members know the bot's limitations, whereas test users

should have only as much information as regular end-users (Gołabek et al., 2023).

With CDD, bots receive frequent, incremental updates informed by user

interactions. Establishing a CI/CD pipeline early in development enables quick

responses to observations from conversations (Singh, 2023).

 Chatbot to Support the Customer Service Process

162

Adopting this approach from the outset of bot creation is beneficial. Consider both

"happy paths" and "unhappy paths " in crafting conversational flows." A happy

path occurs when a user follows a conversation predictably and provides the

required details when prompted. However, users often deviate from this ideal

scenario, introducing questions, chit-chat, or additional queries. This deviation is

known as the unhappy path.

The bot must handle unhappy paths well, but predicting what path a given user

might take is impossible. Often, developers try to account for every possible

divergent path when designing unhappy paths.

 Planning every possible state in the state machine (many of which will never be

reached) requires a lot of extra work and significantly increases training time.

Instead, a conversation-based development approach is recommended when

designing unhappy paths.

2. Literature Review

Currently, humanity finds itself in the era of advanced language models like GPT-3

and GPT-4 (Generative Pre-Trained Transformer) (Koubaa, 2023) and BERT

(Bidirectional Encoder Representations from Transformers) (Bello et al., 2023).

These models can conduct conversations with correct grammar and semantics.

However, understanding the history of NLP is essential to fully grasp how these

models work (Maj et al., 2023).

Humans created language to communicate and efficiently share information. We've

developed complex paradigms for language, which has evolved while retaining its

core function of information exchange. For instance, hearing the word "apple"

instantly evokes the mental image of a fresh, red fruit. Our brains can seamlessly

associate words with mental images, sensations, and feelings.

Computers, however, only comprehend binary data. Explaining something as

intricate as a language to a computer is challenging because computers don't follow

the same principles we do. Understanding the basics of linguistics is vital before

attempting this task (Hamilton and Lahne, 2022).

Linguistics is the scientific study of human language. It methodically and

objectively examines all aspects of language. Unsurprisingly, many foundational

NLP principles are linked to linguistics. This connection leads us to Ferdinand de

Saussure, the father of 20th-century linguistics. In the early 1900s, Saussure

introduced a systematic approach to language as a network of interconnected

elements during a course at the University of Geneva.

Russian linguist Vladimir Plungyan described Saussure's "revolution" as changing

language perception from a chaotic collection of facts to an ordered system.

Tomasz Smutek, Marcin Marczuk, Michał Jarmuł, Ewelina Jurczak, Damian Pliszczuk

163

For Saussure, acoustic sounds in language represent concepts that shift with

context. His posthumous book, *Cours de linguistique générale*, highlighted his

structuralist approach to language, now fundamental to modern NLP techniques.

Saussure and his students advocated understanding language as a system where

elements are correlated, identifying contexts through causality (Khurana et al.,

2023).

The next linguistic breakthrough came in the 1950s when Alan Turing published

"Computing Machinery and Intelligence," also known as the Turing Test. This test

determines a computer program's ability to mimic human conversation with an

independent judge present (Strawn, 2014).

3. Research Methodology

This section will present an example solution that allows you to place a chat

window with the option of greeting the user and starting a conversation with the

agent. This solution uses the functionality described in the section Adding an

assistant to your website, i.e., adding a few lines of code to the website's HTML

code, but this time using an initial message.

To better understand the potential of such a solution, a website was created for

employees using Flask, containing data on the orders they handle. User data is

saved in the database. When a given employee logs in to his account, an action

containing his ID will be launched; on this basis, a chat window will open, and the

assistant will welcome the person. The subsequent components are described in the

following sections.

The first component is, of course, the employee database. The presented example is

a simple table containing only the employee's ID, his name, surname, city where he

works, and the ID of the store where he works. An example table containing two

employees is shown in the figure below.

Figure 1. Sample records in the employee table.

Source: Own creation.

After successfully logging in, the user is redirected to the page of orders they

manage. The next drawing shows such a page. As you can see, the employee

currently has no active orders. But let's focus on what is essential from the chatbot's

point of view. As you can quickly notice, after transferring to the website, in

 Chatbot to Support the Customer Service Process

164

addition to its other functionalities, such as tabs or a greeting in the header, a chat

window opens, where the assistant greets the user. This is done with simple lines of

HTML code inserted into the page's code. This is an extension of the approach

presented in the Adding an Assistant to your Website chapter with additional

parameters.

Thanks to this, when the user logs in to his account, a message will be sent

containing his ID, and the assistant will greet the employee by mentioning his

name. Of course, this approach can be freely extended, but it is only an illustrative

example showing the possibilities of such a solution. We can use this functionality

after starting the Rasa engine and the action server on the appropriate address.

Figure 1 shows an example dialogue using the model presented in the previous

parts of the documentation. Of course, at this stage, the topics and how the assistant

can talk depend only on the specificity of his tasks and the functioning of a given

company.

This part will present how to conduct a conversation between different assistants.

Let's assume that our essential assistant is the one whose properties were described

in the previous sections. Apart from him, many other assistants may be related, for

example, to the appropriate departments of a given company.

This example will show how our initial assistant can send a query to another bot

that monitors currency rates - it can be assumed that this bot is responsible for

supporting business decisions. Communication between bots will be carried out

using REST API (Wolde and Boltana, 2021).

The following sections will present a simplified process of building an assistant

that informs the user about current currency rates, modifications to the assistant

presented so far that allow obtaining appropriate information, and an example

conversation.

The first important issue is creating a bot that can inform the user about currently

applicable currency rates (currency assistant). This is a very simplified approach

and is only intended to show how several assistants can be connected. The NBP

API will be used to build this functionality, and the assistant will be implemented

as a Docker container.

Therefore, it is a solution that allows you to appropriately combine many assistants'

functionalities and direct queries. This can be used in various enterprises, where,

for example, employees have assistants who support them in fulfilling orders, and

management staff have assistants who support them in making business decisions.

Then, by adequately defining intentions, management staff can also obtain

information about the execution of orders by a given employee without making

many changes to their assistant's model.

Tomasz Smutek, Marcin Marczuk, Michał Jarmuł, Ewelina Jurczak, Damian Pliszczuk

165

4. Research Results and Discussion

The presented solution uses the Jina AI tool that implements neural search and is

built based on deep learning and artificial intelligence. Using cutting-edge NLP and

computer vision techniques, Jina offers a straightforward way to index and search

documents, audio, images, and videos. More about the tool itself is included in

another part of the documentation.

In the presented example, the goal was to connect the mentioned tool with an

assistant built using Rasa (that is why English was considered at the beginning).

This allows the user to search data (generally from multiple sources) - in this case,

recipe titles. The hugging face dataset was used for this task, which contains recipe

titles with full descriptions and an external link (Wolf et al., 2020).

As described in the previous sections of the documentation, Rasa Open Source

allows you to define custom actions so that the virtual assistant can run custom

Python code. As previously shown, this can be used, for example, to interact with

third-party databases or APIs. Because we can run everything that we can define

using Python, we can consider another functionality of connecting the assistant

with the Jina AI information retrieval engine to recommend the best products to the

user based on his description.

To search for a set of information, we can, of course, store the entire data set in

memory and use standard string-matching modules to find appropriate recipes. This

is, of course, a very inefficient solution, firstly due to storing the data set in

memory (as long as the set is small, it will not be a big problem) and secondly, due

to not taking into account the context of the descriptions contained in the data set

and their substantive meaning - for these things, there are models such as BERT

(Bidirectional Encoder Representations from Transformers) that Jina uses (Günther

et al., 2023).

The following section will briefly present Jin's principle of operation and how to

use the search server using a custom action in the Rasa assistant. As mentioned,

Jina allows the use of trained language models (used for various tasks) to increase

the accuracy of the searched information.

However, before we get to the code, it is worth mentioning how contextual search

works. Of course, our data is indexed to prevent the entire data set from being

stored in memory and to ensure faster searching. The indexes in the solution

proposed in Jina AI are not based on tokens but on embeddings.

So, in the first step, the analyzed text is embedded as a numerical vector. This step

can be performed using a contextual language model like BERT. This procedure is

performed for each document in the considered dataset until a collection of vectors

representing each document is reached. Jina allows the configuration of any

 Chatbot to Support the Customer Service Process

166

embedding model and provides a set of models stored in the JinaHub repository.

Once the input documents have been converted into a collection of vectors, we can

index them. Therefore, when a query for specific information is made, the vector

representation of the input query will be compared with the vector representations

of the set of documents that have been indexed. To make this process efficient, we

can use, e.g., nearest neighbor search algorithms. Jina also offers many indexing

techniques. In this example, we will use indexing with SimpleIndexer, located in

their repository.

Technically, the transfer process is the same whether the bot transfers the

conversation to a human or another bot. The post-handoff user experience will be

different, but bot-to-bot handovers were the first method explored for

demonstration and testing purposes.

In any handover, the first consideration is whether the bot will continue

participating in the conversation after the handover. The conclusion is that it is

almost always better for the bot to be wholly disconnected from the conversation

after it is transferred because after the bot is transferred, messages coming through

the channel may be entirely outside the bot's domain, have no labels (human

transfer) or have inconsistent labels (transfer by bot).

Of course, we can look at human conversations later to see if there's anything we

can use to improve the bot. Still, the communicated parts of the conversation

should be completely separate from the bot's standalone discussions. This makes it

easy to view each conversation by who the user was talking to.

For this reason, it was decided that it was best to configure forwarding from the

front end. The flow would work like this: bot #1 would ask the user if they wanted

to be sent to bot #2, and the message feed would switch the chat endpoint it was

listening to. Once the chat endpoint was changed, bot #1 would no longer receive

any messages unless the user requested to be forwarded back to bot #1; in this case,

the conversation would continue where it left off.

The way to build the NLU pipeline in Rasa is defined in the config.yml file. This

file describes all the steps in the pipeline that Rasa will use to detect intents and

entities. This approach begins by receiving text as input, and then through

subsequent steps; the individual modules continue parsing until entities and intents

are obtained as output.

The first step is to divide the statement into smaller pieces of text called tokens.

This must happen before text can be highlighted for machine learning, which is

why a tokenizer is usually listed at the beginning of the pipeline. Some tokenizers

also add additional information to tokens. For example, spaCy library functions can

also generate token lemmas that CountVectorizer can use later.

Tomasz Smutek, Marcin Marczuk, Michał Jarmuł, Ewelina Jurczak, Damian Pliszczuk

167

Features create numerical features for machine learning models. Sparse features

produce feature vectors with many zeros, usually consuming significant memory.

We use sparse features to optimize storage, recording only the non-zero values and

their positions in the vector. This technique minimizes memory usage and allows

for training on larger datasets.

Features can generate two types of features: sequential and sentence features.

Sequential features form matrices sized (number of tokens x feature size),

providing a feature vector for each token in the sequence. Sentence features consist

of a (1 x feature size) matrix with a feature vector representing the entire utterance.

Both feature types are usable in any model, and the classifier can choose which

features to employ.

In addition to features for tokens, we also generate features for the entire sentence.

This is sometimes also referred to as the CLS token. The rare features in this token

are the sum of all the rare features in the individual tokens. Dense features are

either a collective sum/average of word vectors (in the case of spaCy) or a

contextualized representation of the entire text (in the case of hugging face

models).

What is essential from the point of view of building your solutions and, above all,

the project is that you can freely add your own components using non-standard

feature creation tools.

5. Conclusions, Proposals, Recommendations

Chatbots are a valuable tool in customer service, benefiting both customers and

companies. Continuous optimization of chatbots is necessary, both technically and

content-wise, to provide users with the best possible experience. Integrating

chatbots with other customer service systems can increase their effectiveness and

usability.

Despite the advantages of chatbots, they should not replace interactions with live

consultants, especially in the case of more complex and emotional customer

problems.

Upcoming research should focus on improving chatbots' intelligence,

personalization, and integration with advanced analytical systems to better

understand customer needs and provide them with comprehensive service.

Additionally, exploring the use of artificial intelligence-based technologies, such as

natural language processing and machine learning, may contribute to further

developing chatbots in customer service.

 Chatbot to Support the Customer Service Process

168

References

Bello, A., Ng, S.C., Leung, M.F. 2023. A BERT Framework to Sentiment Analysis of

Tweets. Sensors, 23(1). https://doi.org/10.3390/s23010506.
Cieplak, T., Rymarczyk, T., Kosowski, G., Maj, M., Pliszczuk, D., Rymarczyk, P. 2021.

Methods of process mining and prediction using deep learning, Metody eksploracji i

prognozowania procesów z wykorzystaniem gbokiego uczenia. Przeglad

Elektrotechniczny, 97(3), 146-149.

Gołabek, Ł., Pliszczuk, D., Maj, M., Bogacki, S., Rzemieniak, M. 2023. Artificial

intelligence in a distributed supply chain control model for personalizing and

identifying products in real-time. In: Innovation in the Digital Economy (pp. 85-97),

Routledge. https://doi.org/10.4324/9781003384311-8.

Günther, M., Milliken, L., Geuter, J., Mastrapas, G., Wang, B., Xiao, H. 2023. JINA

EMBEDDINGS: A Novel Set of High-Performance Sentence Embedding Models.

3rd Workshop for Natural Language Processing Open Source Software, NLP-OSS

2023, Proceedings of the Workshop. https://doi.org/10.18653/v1/2023.nlposs-1.2.

Hamilton, L.M., Lahne, J. 2022. Natural Language Processing. In: Rapid Sensory Profiling

Techniques: Applications in New Product Development and Consumer Research,

Second Edition. https://doi.org/10.1016/B978-0-12-821936-2.00004-2.

Khurana, D., Koli, A., Khatter, K., Singh, S. 2023. Natural language processing: state of the

art, current trends and challenges. Multimedia Tools and Applications, 82(3).

https://doi.org/10.1007/s11042-022-13428-4.

Koubaa, A. 2023. GPT-4 vs. GPT-3.5: A Concise Showdown. Preprints, March.

Maj, M., Rymarczyk, T., Maciura, Ł., Cieplak, T., Pliszczuk, D. 2023. Cross-Modal

Perception for Customer Service. Proceedings of the 29th Annual International

Conference on Mobile Computing and Networking.

https://doi.org/10.1145/3570361.3615751.

Mishra, D.S., Agarwal, A., Swathi, B.P., Akshay, K.C. 2022. Natural language query

formalization to SPARQL for querying knowledge bases using Rasa. Progress in

Artificial Intelligence, 11(3). https://doi.org/10.1007/s13748-021-00271-1.

Nichol, A. 2020. Conversation-Driven Development. The Rasa Blog: Conversational AI

Platform Powered by Open Source.

Singh, N. 2023. CI/CD Pipeline for Web Applications. International Journal for Research in

Applied Science and Engineering Technology, 11(5).

https://doi.org/10.22214/ijraset.2023.52867.

Strawn, G. 2014. Alan turing. IT Professional, 16(1). https://doi.org/10.1109/MITP.2014.2.

Wolde, B.G., Boltana, A.S. 2021. REST API composition for effectively testing the Cloud.

Journal of Applied Research and Technology, 19(6).

https://doi.org/10.22201/icat.24486736e.2021.19.6.924.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,

Louf, R., Funtowicz, M., Davison, J., Shleifer, S., Von Platen, P., Ma, C., Jernite,

Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., … Rush, A.M. 2020. Transformers:

State-of-the-Art Natural Language Processing. EMNLP 2020 - Conference on

Empirical Methods in Natural Language Processing, Proceedings of Systems

Demonstrations. https://doi.org/10.18653/v1/2020.emnlp-demos.

