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Abstract:  

  

Purpose: Systems modeling is one of the basic research methods in scientific human activity. 

It should also be mentioned that the modeled systems are often multidimensional, which is an 

additional serious obstacle. Richard Bellman formulated the concept of the "dimensional 

curse" which says that as the dimensionality of a system increases, difficulties increase 

geometrically. In this article, the authors consider the problem of dimensionality reduction in 

order to build a model of the ship's exhaust emissions. It was observed that some data are 

incomplete or have little impact on the baseline variables.  

Design/methodology/approach: Two methods of dimensionality reduction were applied 

(Pearson's linear correlation index and arc-angle index) and their suitability for this process 

was discussed. 

Findings: Thanks to the methods used, it was possible to obtain information on the 

significance level of each of the model inputs. In addition, a lot depends on context, data 

availability, and much more. In any case, it is worth doing research in this direction. 

Practical implications: We deal with modeling mainly in cases when we need to rely on 

measurement data, and the modeled system itself is unknown to us. The only thing the 

researcher has at his disposal is a certain set of measurement data, which very often lacks 

metadata. Nevertheless, even the basic information about input and output data allows you to 

create a model. However, the problem may be too much data. Although their storage itself is 

nothing difficult at present, the same sending them using means of communication (e.g. 

sending via the Internet) may already be troublesome. 

Originality value: Typically, in the analysis of significance, methods that take into account 

the value of variance are used. Such a method is, for example, PCA (principal component 

analysis) (Sorzano 2014, Scholkopf 1997). The originality of the approach described in the 

article, however, consists in building a ranking of the significance of individual variables. 
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1. Introduction 

 

The examination of the significance of the input variables is aimed at determining 

whether the analyzed variable has an impact on the output variable. If it is absent (it 

is difficult to prove it on the basis of measurement data) or it is very low (easier to 

prove), then it may be considered whether or not to eliminate it from the system 

model building process. As a result, the dimensionality is reduced, which in turn 

may simplify the model. This problem is discussed, for example, in Piegat (2001) 

where the author even proposed a simple method of tracking the change in the value 

of the output variable from the value of the input variable. However, let us ask the 

question of how to define significance. 

 

Let us assume that we are dealing with a multidimensional linear system in which 

the described variable has the form: 

 

  (1) 

 

In such a situation, the significance analysis is very simple. It is enough to read the 

values of the coefficients . The higher the value of a given , the higher the 

significance of the variable will be. The  coefficient can be ignored because 

there is no input variable next to it. 

 

Of course, the described case is very simple. We rarely deal with a situation in which 

the modeled system is already described in an analytical form. In addition, there is 

always a risk that it is non-linear (as a rule, we do not have such information at the 

beginning). So, this simple method will not apply here. 

 

2. Some Selected Methods of Dimensionality Reduction 

 

The first method will be to use the Pearson's linear correlation coefficient (Pearson, 

1895). It allows us to determine whether a given system is linear or not. With the 

values of this coefficient equal to 1 or -1 we deal with a linear system. Otherwise, it 

is a non-linear system, but in situations where the value of the correlation coefficient 

is close to 1, then such a system can be modeled using a linear model with little 

error. In Chimiak (2001) the author analyzed the usefulness of this coefficient in 

order to determine the significance of individual system inputs.  

 

First of all, attention should be paid to the ease of use of the linear correlation 

coefficient. It is a tool known for many years and its interpretation is easy. In the 

same publication, the author presented a very simple experiment, which, however, 

shows some disadvantages of this approach. This is best illustrated in Figure 1. 
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Figure 1. Linear correlation coefficient as an indicator of significance 

  
Source: Chimiak (2001).   

 

We are dealing here with a simple linear function in the form f(x) = | x |. The 

dependence of the dependent variable on the explanatory variable is obvious. 

Nevertheless, with the given measurement data (described in the Figure), we 

obtained the value of the linear correlation coefficient . Of course, from the 

visual assessment of Figure 1, we can see that the explanatory variable is important. 

The more that it is the only variable describing the system. This value of the 

coefficient shows that the relationship is non-linear in this range of measurement 

data. Based on this experiment, according to Chimiak (2001), it can be concluded 

that the linear correlation coefficient may sometimes fail in the analysis of the 

significance of the input variables. However, in this article it was decided to use this 

method because such a situation as in Figure 1 is really rare and only happens in 

case of ideal experimental conditions (Chimiak-Opoka, 2001). 

 

The second method is an arc-angle index proposed by Piegat (2001). To illustrate 

this method, let's assume that we have a given SISO (Single Input Single Output) 

system with a known analytical form and we can represent it using the OA curve as 

in Figure 2. 

 

Figure 1. Illustration of an arc-angle index 
 

 
 
Source: Piegat (2001). 
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At the outset, we will determine the length of the curve that represents our system. 

We express it in formula 2: 

 

 

(2) 

 

Then, from the point 0, we draw a line 0A', the length of which is exactly the same 

as the length of the 0A curve. This line will form the angle α with the axis of the 

abscissa. The higher the value of this angle, the greater the significance of the given 

system input. Dividing  , we get the cosine value of this angle. Taking into 

account the fact that  and , the formula for the significance index 

is as follows: 

 

 

(3) 

 

Assuming that the data is preprocessed and normalized in the range (0 to 1), this 

formula will be simplified into the form: 

 

 

(4) 

 

Of course, the above formulas can be used when we are able to determine the 

dependence of the input xI on the output y in the analytical form. Naturally, in the 

case of real data, where the goal is to build a model, this is not the case. 

 

If we are dealing with real measurement data, then the length of the line 0A' is 

determined in a different way. The first stage (although not always necessary) is data 

normalization, preferably in the (0 to 1) range, especially when the domains of 

individual system inputs are very different from each other. Then we perform an 

analysis for each considered pair of inputs/outputs (you can also examine the 

relationship between the inputs or outputs themselves). We do this by dividing the 

measurement data set into n intervals, ensuring that each such interval has the same 

number of samples (as far as possible). The number of such intervals is usually 

determined experimentally.  

 

A useful tool here can be the visualization of measurement data in the form of a 

graph. Too small number of ranges may make the estimation of significance too 
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inaccurate, while too large may lead to the fact that the final value of significance 

may be very much affected by e.g., a measurement error. Let us assume that we are 

dealing with a set of measurement data with the number of samples n = 100. Then 

the division into sub-intervals with the number of samples e.g., m = 2 or m = 50 is 

not correct. 

 

For each resulting interval, we must then determine its center. We do it in a very 

simple way by calculating the arithmetic mean for the ordinate and abscissa 

variables. The points obtained in this way are then connected with a straight line. 

The first point is then connected with a straight line to the origin of the coordinate 

system, and the last point with the coordinates (1, yn) where yn is the y coordinate of 

the point being the center of the last interval. 

 

As a result, we obtain a line whose beginning is determined by the beginning of the 

coordinate system and the end is determined by the point (1, yn). We assume that the 

length of the broken line is equal to the length of the 0A' line (or the 0A curve) 

described above. Thus, the significance factor of the input xi can be determined from 

the formula: 

 

 
 (5) 

 

3. Measurement Data 

 

The input data (The Baltic Sea, the Pomeranian Bay area - about 25 000 records) has 

been received from two sources: 

 

• automatic vessel identification system – AIS, 

• LRS database containing technical data of ships (MARIT-IHS, 2021). 

 

According to the SOLAS convention (SOLAS, 1974), AIS must be fitted to all 

seagoing ships above 300 GT gross tonnage and all passenger ships. The transmitted 

data streams, emitted at specified time intervals, contain data on the static and 

dynamic parameters of the ship, such as: 

 

• identification numbers (MMSI, IMO), 

• size (LOA, BOA, Draft), 

• load capacity (DWT, GT), 

• name, 

• type, 

• current position, 

• course, 

• speed. 
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For the output data, four quantitative parameters have been taken into account, 

taking into account emissions in four basic categories of exhaust components 

expressed in kilograms per hour [kg/h]: 

 

• nitrogen oxides (NOx), 

• sulfur oxides (SOx), 

• carbon dioxide (CO2), 

• particulate matter (PM). 

 

The ranges of individual input and output variables are presented in the table: 

 

Table 1. Input and output data ranges 
L.p. Name Type Minimum Maximum Unit 

1 Type In n/a n/a n/a 

2 DWT (deadweight 

tonnage) 

In 86 37331 [t] 

3 GT (gross tonnage) In 123 22655 [t] 

4 NT (net tonnage) In 104 12073 [t] 

5 Length In 24 199.9 [m] 

6 Width In 7 23.78 [m] 

7 Timestamp In - - [min] 

8 Latitude In 45.89699167 57.77976667 [deg] 

9 Longitude In -7.780025 19.59539167 [deg] 

10 SOG (speed over 

ground) 

In 0.0 98.90000153 [kn] 

11 COG (course over 

ground) 

In 0.0 360.0 [deg] 

12 NOx Out 0.0 215.4630231 [kg/h] 

13 SOx Out 0.0 19.45352329 [kg/h] 

14 PM Out 0.0 3.584035714 [kg/h] 

15 CO2 Out 0.0 10365.59668 [kg/h] 

Source: Own study. 

 

4. Experiments 

 

So, let's analyze the significance of each input variable for each output variable. This 

was done using the two methods described above. Our system has 11 inputs and 4 

outputs. In the case of a larger number of outputs, we can make a simple 

decomposition into several systems with one output. It does not matter much from 

the point of view of building the model. The problem, however, is the number of 

inputs. Assuming that we were dealing with binary information, then there may be as 

many as 211 = 2048 different unique input vectors at the input. Lowering the 

dimensionality by only one dimension causes the reduction of these vectors by 50%.  

 

And we are talking only about binary values 0 and 1. In the case of real numbers 

(and there are such here) the number of unique vectors becomes almost impossible 
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to estimate. Thus, reducing the number of inputs will geometrically reduce the 

complexity of the model. 

 

Table 2 shows the results of the linear correlation coefficients calculating the impact 

of each of the 11 inputs on the individual outputs. As is known, this coefficient takes 

values from -1 to 1. From the point of view of significance analysis, the sign "-" has 

no meaning. The absolute value of this coefficient may as well be taken as a result. 

Nevertheless, in Table 2 it was decided to leave negative values. Based on a short 

analysis of this table, we can conclude that the following parameters have the 

greatest impact on the values of individual output variables, GT, NT, Length, Width, 

Latitude, SOG and COG. The other inputs also have an impact, but possibly less.  

 

As mentioned earlier, the linear correlation coefficient is not entirely suitable as a 

tool for significance analysis. Although we can reduce as many as 4 dimensions, 

only the quality of the model will answer the question of whether such a reduction 

was right. Usually, we construct the model in such a way that we first build a 

ranking of the input variables, taking into account their impact on individual outputs.  

 

Then we can take two approaches, constructive and destructive. In the first case, we 

start with 1 or 2 of the most significant inputs and possibly add more dimensions 

later. The destructive approach is, of course, the opposite. The decision to add or 

subtract another dimension is made primarily after analyzing the credibility of the 

model. It should be remembered that the model error itself does not mean much 

because it may be acceptable for the training data, but very high for the test data 

(overfitting problem).  

 

In the case of the linear correlation coefficient, it is also not possible to adopt a 

border value at which we can accept a given variable or reject it. Note that it is used 

to check whether the relationship is linear. The result may vary depending on the 

measurement data, even if you are considering the same system all the time. 

 

Table 2. Significance analysis using Pearson's correlation coefficient 
 NOx SOx PM CO2 

Type -0.142 -0.085 -0.160 -0.148 

DWT 0.301 0.088 0.298 0.290 

GT 0.506 0.152 0.443 0.431 

NT 0.436 0.135 0.398 0.387 

Length 0.432 0.144 0.430 0.419 

Width 0.546 0.166 0.555 0.543 

Timestamp -0.039 -0.073 -0.018 -0.016 

Latitude 0.420 0.201 0.452 0.460 

Longitude -0.059 -0.030 -0.070 -0.071 

SOG 0.616 0.294 0.624 0.641 

COG 0.040 0.030 0.064 0.067 

Source: Own study. 
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Thus, our system can take the form of a function: 

 

 (6) 

 

We can treat the above equation as a starting point for building a model. It is up to 

the researcher whether he will adopt a constructive (recommended approach) or a 

destructive method. In the case of the constructive method, it may be possible to 

further reduce the dimensionality. 

 

Now let's try to do exactly, the same experiment, but this time using the arc-angle 

index. The results are shown in Table 3. A split into 24 intervals was used. The 

normalization process was not performed as it is not necessary (described above). 

The results obtained turned out to be very interesting. 

 

Table 3. Significance analysis using the arc-angle index 
 NOx SOx PM CO2 

Type 0.649 0.043 0.015 0.991 

DWT 0.000 0.000 0.000 0.026 

GT 0.000 0.000 0.000 0.042 

NT 0.000 0.000 0.000 0.155 

Length 0.184 0.001 0.000 0.960 

Width 0.782 0.055 0.005 0.995 

Timestamp 0.007 0.000 0.000 0.626 

Latitude 0.843 0.185 0.060 0.996 

Longitude 0.752 0.086 0.032 0.995 

SOG 0.628 0.011 0.005 0.991 

COG 0.070 0.000 0.000 0.923 

Source: Own study. 

 

All results in Table 3 are rounded to three decimal places. In fact, none of the results 

had a value of 0. There is a very important thing to mention here. The arc-angle 

index does not uniquely evaluate the strength of the dependence of the output 

variable on the input variable. It also depends on many factors, such as the 

distribution of measurement data.  

 

When using this method, it should also be remembered that it does not determine the 

linearity of a given relationship. The conclusion is as follows, the arc-angle index 

value itself is not significant. It is important that from the experiment we can build a 

ranking of the input fields that can be taken into account to build the model. Figure 3 

shows an example of how the arc-angle index is computed. The greater the length of 

the broken line (marked in red), the higher the value of this index. 

 

Let us assume, therefore, that we select for the model those input variables which for 

the NOx, SOx and PM outputs showed values greater than 0. All values of the 

significance of the input variables, in the context of CO2, showed high values. The 

very selection of the variables used to build the model does not have to be fully 
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compliant with the ranking. Moreover, consider that the output space is 

multidimensional. 

 

Figure 3. An example of calculating the arc-angle index 

 
Source: Own study. 

 

For one dimension, you can just consider taking only values, e.g., greater than 0.500. 

It is also worth making a simple, subjective analysis of variables when the 

relationship seems obvious to us. Thus, we can conclude that the key variables for 

pollutant emissions are: Type, Length, Width, Latitude, Longitude and SOG. 

Therefore, we limited the number of dimensions of the input space from 11 to 6. In 

this way, we can obtain the function described by the equation: 

 

 (7) 

 

The question that should be asked is whether a further reduction is possible. We can 

clearly see that the values of the output variables can depend on the Length and 

Width inputs. It is customary to determine, first of all, the length of the ship. 

Therefore, it may turn out that to build the model it is enough to take into account 

only one of these variables. Thus, we only consider 5 input variables. A similar 

question can be asked for the variables Latitude and Longitude. Do geographic 

coordinates affect exhaust emissions? As we consider the limited data from a small 

area of the Baltic Sea, we can assume that their actual impact is negligible. 

 

5. Conclusions 

 

Richard Bellman's term "dimensional curse" (Bellman, 1957) perfectly describes the 

problems in modeling large-dimensional systems. This article describes two 

approaches to this problem, using Pearson's linear correlation coefficient and the arc-

angle index. Both methods allowed the reduction of a certain number of input 

variables. Unfortunately, both of them also have some drawbacks. The definition of 

the linear correlation coefficient is unambiguous. Every researcher knows exactly 

what it is for. Nevertheless, we are constantly looking for new applications also for 
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known research methods. Arc-angle index, on the other hand, is a method that was 

designed specifically for significance analysis. Naturally, it will also be sensitive to 

the distribution of measurement data, the number of samples, etc. So how to judge if 

the method used is effective? 

 

The best method of assessing whether the number of inputs has been reduced 

correctly is, of course, to evaluate the model. Earlier it was mentioned that a correct 

model should be characterized by the minimum error and the highest possible 

reliability. While model underfitting is very easy to detect, we sometimes have a 

problem with overfitting. Therefore, one should remember to divide the 

measurement data set into training data and test data in order to be able, for example, 

to use cross-validation techniques. The construction of the model is also a very 

interesting material for analysis.  

 

However, due to the volume of the article, the authors decided to present this topic in 

a separate paper. It should also be mentioned that principal component analysis 

(PCA) is also used to reduce dimensionality. It was described, inter alia, in 

Krzanowski, (2005). However, this article focuses on the two methods previously 

mentioned. 
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