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Abstract: 

 

Purpose: The article presents the use of neural networks to predict the parameters of the 

movement of surface water masses in enclosed sea areas. 

Design/Methodology/Approach: The input data were meteorological parameters recorded at 

the stations Trzebież and Świnoujscie. The output data were the parameters of moving drifters, 

obtained because of an experiment in 2018 in the waters of the Szczecin Lagoon. The model 

uses Multi-Layer Perceptron networks with different activation functions. As a criterion for 

selecting the best networks, the highest correlation statistics for the test and validation sample 

were used. 

Findings: As a result of the research, predictions of the speed and direction of surface water 

masses were obtained based on the meteorological conditions recorded on the outskirts of the 

studied reservoir. 

Originality/value: The presented research is a new application of artificial neural networks in 

security in restricted waters. The results obtained in the study may be beneficial for the 

maritime administration, which is responsible for the safety of navigation in the studied water 

area. The model can be used to design a survivor's route or a contamination route.   
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1. Introduction 

 

The literature on SAR and existing search procedures for survivors has focused on 

open waters deeper than 3m. However, in recent years there has been an increase in 

the popularity of tourist navigation in enclosed sea areas, for which the IAMSAR 

(International Aeronautical and Maritime Search and Rescue) manual does not 

describe in detail how to estimate surface current parameters and thus how to calculate 

the search area for a missing person and the movement of debris. 

 

Several water circulations models have been developed at global and even at selected 

local scales. Some of them are very complex three-dimensional hybrid flow models, 

(Haidvogel and Beckmann, 1999; Korotenko et al., 2004), but there is a lack of a 

universal model that can be easily applied to closed marine areas with similar 

characteristics. Several forces are causing specific water circulation in marine areas, 

such as atmospheric pressure fluctuations, tides, winds, rotation of the Earth, tidal 

currents. Although they are components of the 3D model, the short-term variability of 

surface currents is mainly due to the influence of winds. This property is particularly 

pronounced in enclosed marine areas of small size. 

 

The development of dynamic areas of search for survivors and displacement of 

pollutants as a function of hydrometeorological conditions over a given period in a 

limited marine area is not an easy task but could be a beneficial achievement. In this 

case, it would be necessary to obtain a theoretical basis and then implement machine 

learning algorithms using neural networks to obtain an advanced integrated model 

combining hydrometeorological data obtainable from meteorological stations located 

closest to the body of water. The proposed solution can be a tool combining various 

sources of information into one. The resulting systems should integrate already 

existing and functioning elements. The input and output data should be understandable 

for the operators and provide convincing arguments to take specific actions. 

Integrating several elements into one should translate directly into reduced situation 

assessment time and thus directly into increased navigational safety and improved 

search and rescue effectiveness. 

 

In addition to the potential benefits in SAR, the description of the movement of water 

layers in closed marine areas can - and should - be used to determine the direction and 

speed of movement of contaminants that may be associated with shipwrecks while 

navigating in these areas or with other events in the land infrastructure that affects or 

is associated with the basin area. From an ecological point of view, this is a significant 

issue. Analysis of the movement of surface drifters depending on the prevailing wind 

conditions was carried out, e.g., the Gulf of Finland in different seasons of 2011 and 

2013. The authors showed that in the Gulf of Finland, in many cases, the drift is 

influenced by coastal effects in the Gulf of Finland and its complex bathymetry. On 

the other hand, in another paper (Chang, 2012), the authors obtained a relationship 

between observed near-surface current vectors and surface wind vectors for the Pacific 
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Northwest under solid winds (20-50 m/s). However, these were studies for an open 

water body and only for strong winds. 

 

Despite the theoretically many factors that may influence the movement of the waters 

of a limited marine area, the short-term variability of surface currents is essentially 

related to wind parameters. This property is particularly noticeable in small water 

bodies, such as the Szczecin Lagoon. It is worth emphasizing that these reservoirs are 

mostly water bodies that do not have any features of an ocean basin. Therefore, 

adopting the circulation of oceanic waters to the conditions taking place in the waters 

of closed sea areas is not a proper approach. It is worth noting that no comprehensive 

studies of current and drift parameters, leading to universal SAR models or 

procedures, have been carried out to date in similar areas.  

 

In the literature (Breivik and Allen, 2008; Burciu, 2003; 2012; Kasyk et al., 2016; 

Bugajski and Pleskacz, 2016), search and rescue areas in waters used for navigation 

are determined using the Monte Carlo method, Bayesian methods, regression models 

for object drift speed, Fokker-Planck equations, or graphical models. To determine 

such areas, it is necessary to obtain data on surface currents and wind. The path 

parameters with their uncertainties are determined based on the wind parameters, e.g., 

by linear regression or by constructed probability distributions. The survivor's position 

vector at a given time t is calculated as the integral of the survivor's velocity vector 

from the initial moment to time t plus the velocity vector from the initial moment.  

 

IAMSAR estimates of the surface current and wind parameters can be obtained from 

direct observations, maps, wind roses, reliable hydrodynamic numerical models, and 

numerical weather prediction models. The best way to obtain information on current 

and wind parameters is through direct observations. Such observations can be 

obtained from in situ measurements, ships passing through the area, aircraft flying 

over the area, suitably installed buoys or platforms, or satellite measurements.  

 

However, such data are not always available. Other sources of such data are, e.g., 

charts or diagrams. These can be used to determine long-term seasonal averages of 

currents and winds. However, these sources are used in remote areas. Nevertheless, 

estimation of these parameters using these sources should not be used in coastal areas, 

especially in sea areas less than 25 nautical miles from the coast and with water depths 

of less than 100 meters. Other sources include reliable high-resolution hydrodynamic 

numerical models and weather forecasts. 

 

Processes in the atmosphere and hydrosphere have different temporal and spatial 

scales. Moreover, they are characterized by high complexity and variability. In order 

to describe them reliably, different contexts of approach and a wide range of scales 

must be considered.  However, a complete mathematical, hardware, and software 

description is a limitation. Therefore, selected processes are modeled. The models 

describing the processes under study should have an adequate temporal and spatial 

resolution. A model may describe large-scale movements well but may significantly 
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underestimate or overestimate or even omit small-scale movements. However, small-

scale processes can be essential and, depending on the issue. Their inclusion should 

be considered to predict, for example, surface currents and wind parameters as 

accurately as possible. 

 

Of the existing hydrodynamic models covering enclosed marine areas, the PM3D 

model, which is a parallel version for the 3D hydrodynamic model M3D, is in 

operation at the Institute of Oceanography, the University of Gdansk (Kowalewski 

and Kowalewska-Kalkowska, 2017), and is based on a coastal ocean circulation model 

known as the Princeton Ocean Model (POM). This one covers the Szczecin Lagoon 

with a resolution of 1/6 NM (about 300 m), and data from the SatBaltic system, such 

as current parameters, are updated four times a day.  

 

In turn, the UM weather prediction model is operated at the ICM (Interdisciplinary 

Centre for Mathematical and Computer Modelling) at the University of Warsaw 

(Herman-Iźycki et al., 2002), and is based on the Unified Model, developed by the 

UK Meteorological Service Met Office, and the COAMPS model from the U.S. Naval 

Research Laboratory. The UM model provides data at 4 km or 1.5 km resolution and 

is calculated four times a day. Of the other models developed and used, the NEMS 

(NOAA Environmental Modelling System) example has a resolution of about 4 km, 

and its data are updated every 12 hours. The ECMWF (European Center for Medium-

Range Weather Forecasts) model, with a resolution of about 9 km, is updated every 

12 hours. The NEMS model is a local European model. The ECMWF model is a 

global weather model. 

 

Experience has shown that, despite the relatively small size of enclosed sea areas, the 

process of searching for a survivor is often complex and not easy, despite apparently 

favorable factors: limited waters, number of rescue units (sea and air), and short time 

of reporting an accident and arriving at the scene. Therefore, in addition to modeling 

studies, experimental studies must be carried out. Information on wind strength is 

obtained from anemometers, while information on wind direction is obtained from 

anemoscopes. These devices are often combined into one. Water level measurement 

is commonly referred to as the rise of the water level above the water table in a river 

or water region above a conventional reference level. It is not synonymous with the 

depth of a water body. The zero datum of each water level gauge is determined 

regarding the state leveling network. With this information, we can determine the 

water level. Measurements are made with the help of water level gauges, which are 

placed in the water level profile. 

 

2. Research Area 

 

The study area, in this case, is the Szczecin Lagoon, which is an excellent 

representation of a body of water described as a closed sea area. Usually, these are 

small and relatively safe reservoirs for sailing and motorboat sports. The Szczecin 
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Lagoon is about 28 km long and over 52 km wide. The danger is the shape of the 

shoreline and the bottom, which, together with changing hydrodynamic conditions, 

have led to many dangerous incidents. The Szczecin Lagoon is a relatively shallow 

water reservoir. Its average depth is 3.8 m. The main participants of tourist traffic in 

closed sea areas are small boats with limited draught. Due to the specifics of water 

sports and the size of the vessels that can be used, the most critical task of the SAR 

services is to search for people who have fallen overboard or are drifting in the water 

after capsizing. 

 

In order to develop a model that could be useful in any enclosed maritime area, 

hydrometeorological parameters were measured and tested in the Szczecin Lagoon, 

which is a typical representative of such an area. It covers the waters at the mouth of 

the Odra River (Figure 1). On the northern side of the Lagoon, the islands Wolin and 

Uznam separate it from the Baltic Sea. The middle part of the Lagoon is divided into 

the "Great Lagoon" with an area of 488 km² on Polish territory and the "Small 

Lagoon." (German: Kleines Haff), with an area of 424 km², which almost entirely 

belongs to Germany. The southern boundary of the Great Lagoon is marked by the 

mouth of the Jasienica Channel (on the western shore) and the mouth of the Krępa 

River (on the east) (Baltic Pilot, 2018).  

 

The Pomeranian Bay relates to the Szczecin Lagoon through the straits, Dziwna, 

Świna and Piana. The Świna is of tremendous significance for the hydrological system 

of the Szczecin Lagoon. These straits are not branching of the Oder River as their 

currency is not a river current, but it results from permanent equalization of sea waters 

and the Szczecin Lagoon. 

 

Figure 1. Szczecin Lagoon 

 
Source: Own study, based on NAVI-SAILOR 3000 ECDIS-i and www.online/seterra.com.pl. 
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3. Experiment Description 

 

The experiment consisted of 10 drifter launches during the summer season (end of 

June 2018 - beginning of October 2018), the design was developed at the Maritime 

Academy in Szczecin, and a specialized company commissioned the construction. As 

the subject of the study was surface currents in the Szczecin Lagoon, the drifter - afloat 

- had a small height of 18 cm and a balanced buoyancy so that it did not protrude from 

the water was not directly exposed to the wind. Each drifter was equipped with a Spot 

Trace locator, which enabled the real-time recording of the drifter's position via a 

satellite network (Kasyk, Pleskacz, and Kapuscinski, 2021).  

 

Drifters during the ten launches were deployed in pairs or threes. The locations were, 

for each launch, determined individually depending on the wind parameters and to 

maximize the drift time of the drifters (due to the cost of the launching operation). The 

drifters were drifting in the waters of the Szczecin Lagoon until they got stuck in the 

reeds at the shores of the Lagoon or until the need to recharge the battery was signaled. 

At the same time, wind direction and strength were recorded at the nearest 

meteorological stations, Trzebiez and Świnoujście. Based on the recorded routes of 

the drifters, the depth of the body of water at the points where the drifters were located 

was also assigned. 

 

Performed analyses of drifters' speed showed a significant dependence of this speed 

on the direction of the blowing wind (Kasyk, Kijewska, and Pleskacz, 2019b). The 

Vd/Vw ratio, which is essential for searching for survivors, showed significant 

differences depending on the wind direction. From about 3% for northern winds, 5% 

for westerly winds, 9% for south-easterly (Świnoujście) or south-westerly (Trzebież) 

winds.  

 

The movement of surface water masses in the central part of the Szczecinski Lagoon 

was primarily caused by the movement of air masses in its area. The variability of 

drift directions of the designed drifter was highly dependent on wind speed. Drift 

directions close to straight lines were observed at moderate and more vigorous winds. 

On the other hand, in weak or very weak winds, the wind direction usually changes, 

which entails a change in the drift direction of the drifter. 

 

A study (Kasyk, Kijewska, and Pleskacz, 2019a) confirmed the general 

correspondence of drift directions with the directions of air mass movement recorded 

at both Trzebiez and Świnoujście. This was confirmed by statistical tests verifying the 

significance of the correlation between buoy drift direction and air mass movement. 

The influence of individual meteorological parameters on the direction and speed of 

drifter movement varied greatly. Therefore, an artificial neural network method was 

used to predict surface water masses' speed and direction of movement. 
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4. Methodology 

 

4.1 Description of the Neural Network Method 

 

Artificial neural networks are a variety of nonlinear signal processing systems created 

based on the nervous system of living organisms. They are a practical implementation 

of phenomena occurring in nervous systems in the search for new technological 

solutions (Haukin, 2000; Kecman, 2001; Osowski, 2006; Sholkopf and Smola, 2002). 

In most applications, the neural network acts as a universal approximator of functions 

of many variables, implementing a nonlinear mapping of the form: 

 

y =f(x)                                                                                                                        (1) 

 

In the case where x is an input vector and y is an analyzed vector function of many 

variables (Osowski, 2006). Neural networks are mainly used in regression or 

classification problems. At the learning stage of this type of network, sets of two 

vectors are given: the input vector x and the associated output data vector y. Such 

a network is called a trained network. Such a network is called a network trained 

under supervision (with a teacher). 

 

Among the existing network solutions, two basic types of networks can be 

distinguished, unidirectional multilayer networks, implementing the global type 

approximation, which is commonly called MLP (Multi-Layer Perceptron) 

network, and a network using essential functions of a finite medium (most often 

Gaussian functions) implementing the local type approximation, commonly called 

RBF (Radial Basis Functions) network. Both types of networks are versatile tools 

that can serve as both predictors and classifiers. 

 

MLP network is one of the most used neural networks, repeatedly discussed in 

various scientific publications (Haukin, 2000; Osowski, 2006). A schematic of 

such a network with one hidden layer is shown in the figure below. 

 

The number of hidden layers can be arbitrary, with two layers being entirely sufficient 

to map the input signals forming the vector x arbitrarily accurately (x is contained in 

Rn) into the output signals described by the vector y (y is contained in Rm) according 

to the given mapping function y=f(x). Moreover, in many regression problems, one 

hidden layer is enough. At the learning stage, the values of vector y are known and 

equal to vector y0. Individual neurons of the network realize a nonlinear mapping of 

the form: 

 

( )( ) ( ) ( 1)k k k

i i ij j

j

y f u f w y −
 

= =  
 
                                                                                    (2) 

 

where all weights of the network wij form a vector of weights w. 
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An essential element of a neural network is the activation functions responsible 

for the signal transmission from the earlier neurons, which is determined by a 

specific pattern. The choice of the activation function has a significant impact on 

the performance of the network. The perceptron network's activation function f(u) 

is sigmoidal, unipolar or bipolar type (Figure 3). 

 

Figure 2. Single-layer neural network diagram 

 
Source: Own study. 

 

Figure 3. Sigmoidal activation function a) unipolar, b) bipolar 

a)  b)  
Source: Own study. 

 

The sigmoidal flow of the activation function is a characteristic element of MLP 

networks (Osowski, 2006). The flow of signals in these networks takes place in 

only one direction, from input to output.  
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The methods of teaching these networks are convenient to use in practical issues. 

The learning of a multilayer perceptron is usually performed under supervision, 

and the basis of learning is a set of related learning pairs (x, y0), in which x is a 

vector of input data, and y0 is the corresponding vector of output data. 

 

The objective of the learning process is to determine the values of weights of all 

network layers in such a way that for a given input vector x, the output values of 

the signals in the vector y correspond with sufficient accuracy to the set values 

represented by the vector y0. 

 

Learning of the network consists of such a selection of weights that the minimum 

value of the error on the analyzed learning set is obtained, i.e., in a general form, 

it will be the minimum of the error function: 

 

( )
2

1

N

i i

i

E d y
=

= −                                                                                                                              (3) 

 

where: 

di – values calculated using networks 

yi – values of the output vector 

There are many different methods for minimizing the error function. In the case of 

MLP networks, the most used are:  

• backpropagation of error (fastest gradient) method 

• coupled gradient method 

• variable metric method (BFGS) 

 

In the case of phenomena in which we do not know the nature of correlations of co-

existing variables, artificial neural networks can give measurable benefits in 

predicting the value of the phenomenon under study. Necessary, in this case, are the 

input and output vectors of the data. The experiment considered in this paper provides 

this type of data, which made it possible to apply SSN to model the direction and 

velocity of surface movement of water masses in the Szczecin Lagoon. 

 

4.2 Procedures Used in the Article 

 

STATISTICA Automatic Neural Networks (SANN) is a module of the STATISTICA 

statistical package which assists researchers in the most critical stages of network 

design, applying state-of-the-art network architectures and learning methods. It also 

has innovative solutions for designing the network structure using appropriately 

selected error functions to facilitate the interpretation of output data. 

 

The input data set included four meteorological parameters (wind direction and 

strength at Trzebież and Świnoujście stations) at time points corresponding to the 

recorded positions of drifters. The output variables were the direction and speed of the 
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drifter determined from the recorded positions. All input and output variables were 

quantitative variables: wind strength and drifter speed were expressed in m/s, and 

wind direction and drifter direction in degrees. Spherical trigonometry formulas were 

used to determine the distance between the recorded positions and the drifter's 

direction of travel: 

 

cos sin sin cos cos cosA B A BD     = +                                                                       (4) 

and 

sin
tg

tg cos sin cosB A A




   


=

 −  
                                                                                  (5) 

 

Where: 

A, A, B, B – the geographical coordinates of points A and B of the recorded 

positions, 

D – the spherical distance between points A and B, 

 - initial angle of the great circle. 

 

Networks were learned on sets of varying sizes, depending on the length of the drift. 

Longer drifts with variable directions were divided into several parts. 75% of all data 

was the learning set, 15% the testing set, and 15% the validation set. The points were 

selected randomly. With these settings configured, the automatic SANN network 

wizard checked 100 networks of both MLP and RBF types, from which the best five 

were selected. As a criterion for selecting the best networks, the highest correlation 

statistics for the test and validation sample were used. The selected nets were recorded 

and then used to predict the drifter's speed and direction based on the wind direction 

and strength recorded at the Trzebież and Świnoujście stations. Based on the generated 

velocities and directions, the drifter's displacement was determined. 

 

5. Results 

 

Drifts with different structures were selected for analysis. In some, the direction of 

movement was not strongly differentiated, while in others, there were significant 

direction changes. The movement of drifters in different parts of the Szczecin Lagoon 

was also modeled. 

 

Drift 1: 

The first drift analyzed started on 29.06.2018 at 16.00 (53.78855 N,14.48773 E) and 

ended at position (53.72776 N, 14.40228 E). It lasted 24 hours, and the distance 

traveled was 9330 m. The direction of drift was not enormously varied, so all recorded 

points were used to learn and test the network - there were 138 in total. Out of 100 

networks learned and analyzed, the best five were selected, which turned out to be 4-

n-2 MLP networks with one hidden layer and number of neurons n from 5 to 10. Four 

networks had a tan activation function for the hidden layer, and one had an exponential 
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function. One network had a linear activation function, one exponential, one tanh, and 

two logistics for the output layer. The learning quality ranged from 0.78 to 0.86 for 

the test set. The variable metric (BFGS) method was used to minimize the error 

function. The drifter speeds and directions, generated from the learned network, 

reproduced the drifter route No. 1 very well (Figure 5). 

 

Figure 4. Drifters' routes during the experiment 

 
Source: Own study. 

 

Figure 5. Real route (blue points) and route based on learned MLP network (grey 

points) for drift 1 

 
Source: Own study. 

 

Drift 6: 

Drift 6 started on 13/07/2018 at 14.00 (53. 80556 N, 14.34505 E) and ended at position 

(53.74090 N, 14.54948 E). It lasted 43 hours, and the distance traveled was 28042 m. 

The drift was characterized by one significant change of direction of the drifter. As 

shown in Figure 6, the network model reproduced this change well. Of the 100 

networks learned and analyzed, the best five were selected, which turned out to be 4-

n-2 MLP networks with one hidden layer with the number of neurons n ranging from 

4 to 6. Two networks had a tanh activation function for the hidden layer, two had an 

exponential function, and one had a logistic function. In contrast, one network had an 

exponential activation function for the output layer, one a tanh, and three a logistic 

function. The learning quality ranged from 0.65 to 0.73 for the test set. The variable 
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metric (BFGS) method was used to minimize the error function. All recorded points 

were used for learning and testing the network - there were 198 points in total. 

 

Figure. 6. Real route (blue points) and route based on learned MLP network (grey 

points) for drift 6 

 
Source: Own study. 

 

Drift 9: 

Drift No. 9 started on 06.09.2018 at 15.00 (53.77719N,14. 53882 E) and ended at 

position (53.83897 N, 14.58360 E). It lasted 50 hours, and the distance traveled was 

28685 m. The drift direction was highly variable, so the whole drift was divided into 

three parts (Figure 7). The first part included 87 points, the second 67, and the third 

136. 

As in previous cases, out of 100 networks learned and analyzed, the best five were 

selected, which turned out to be MLP networks. The types of activation functions and 

the methods for minimizing the error function were like the earlier examples. The 

speeds and directions of the drifter's movement generated based on the learned 

networks very well represented individual parts of the drifter's route no. 9  

Figure 7. Real route (blue points) and route based on learned MLP network (grey, 

yellow and brown points) for drift 9 

 
Source: Own study. 
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5.1 Network-Based Route Modeling for Other Drifts 

 

The learned networks were used to predict the drifter's route under different but similar 

meteorological conditions. For example, for drift 2, networks learned from drift 1 data 

were used, where the compatibility of prevailing wind directions (northeast winds) 

was critical. The results of the drift two route prediction are presented in Figure 8. The 

distance between the actual drift termination points and the point determined from the 

learned MLP network for drift 1 was about 1km. 

 

Figure 8. Real route drift 2 (blue points) and route based on learned MLP network 

(grey points) for drift 1 

 
Source: Own study. 

 

Another example is the use of networks learned on the part of the data of drift 7, 

corresponding to north-westerly winds, to predict the route of drift 3. The general 

direction of movement of the drifter was maintained, but the distance between the 

actual drift termination points and the point determined from the learned MLP 

network for drift 7 was about 2 km. 

 

Figure 9. Real route drift 3 (blue points) and route based on learned MLP network 

(grey points) for drift 7 (part2) 

 
Source: Own study. 
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6. Conclusion 

 

Artificial neural networks proved to be a good tool for modeling the route of a moving 

drifter. Prediction of drift direction and speed was based on meteorological data 

recorded in Trzebież and Świnoujście. The mapping of the route of individual drifters 

based on data from these drifters was very good. On the other hand, the use of the 

network for modeling the course of drifter movement based on other meteorological 

conditions was not as accurate. The obtained differences between the prediction 

results and the actual routes, in the order of 1 km to 2 km, during 24 hours of drift, are 

a good starting point for improving the model. 

 

It seems that the drifter prediction could be further improved if it was possible to 

obtain wind parameters from the central part of the Szczecin Lagoon, which is not 

possible at present. However, this would require the installation of appropriate wind 

gauges, e.g., at the gates of the Szczecin-Świnoujście fairway. Nevertheless, it is 

worth adding that proper prediction of drift in the waters of the central part of the 

Szczecin Lagoon may make it possible to estimate the area of search for survivors or 

estimate the location of contaminant transfer. 
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