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 Abstract:  

 

Purpose: This study was carried out to analyze the structure of the aggregated network at 

the level of economic sectors and to reveal the central/peripheral sectors. 

Design/Methodology/Approach: The study uses the method of complex networks, with the 

two-step procedure employed to construct the network of economic sectors. First, the MST 

approach is utilized based on the cross-correlation of 496 stock price returns of the S&P500 

Index. Then, the network is aggregated at the level of economic sectors. In addition, to 

analyze the graph, the network theory, multi-dimensional scaling (MDS), and relative 

importance approaches are employed. 

Findings: The results indicate that the sectoral network has a core/periphery structure. 

Based on the centrality measures, the ranking of sectors is provided. Of the 11 sectors, 3 are 

classified as central nodes, 4 as peripheral nodes, and the remaining 4 are classified as 

intermediate. In addition, the network configuration analysis demonstrates that the graph 

consists of two parts with a star-like structure, connected through the industrials sector. 

Practical Implications: An analysis of the cross-correlation network of aggregated assets at 

the level of economic sectors can be applied to ascertain the direction of stock price 

movements in the stock market. The division of sectors in the network into central and 

peripheral nodes has important implications for the management of an optimal portfolio of 

stocks. 

Originality/value: This study contributes to complex network theory and portfolio strategy 

design. A unique procedure is proposed to construct the network of economic sectors using 

the MST-based approach. Detection of the stock market network structure is vital for 

investors and regulators alike. 
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1. Introduction 

 

Financial stock markets are well-defined complex systems (Mantegna 1999) 

consisting of many interacting elements (Mantegna and Stanley 1999; Huang et al., 

2017). Complex networks are among the most widely used to investigate the cross-

correlation of the series of daily stock price returns (Esmaeilpour Moghadam et al., 

2019; Schuenemann, Ribberink, and Katenka 2020; Zhuang and Xiu 2015; Chen et 

al., 2021). According to Onnela et al. (2002), the stock correlation network can be 

considered as a set of nodes consisting of stocks and edges between nodes denoting 

relationships obtained from the correlation coefficients. In the sectoral correlation 

network, nodes denote individual economic sectors and edges are the relationships 

between them, defined by appropriate aggregation from the level of the asset 

network. One advantage of correlation-based network analysis is that it avoids the 

problem of complexity through the network filtration procedure, allowing the 

selection of the most important connections in the graph. 

 

Recent developments regarding network-based correlations analysis have led to the 

representation of the underlying relations between industries (Chen et al., 2015). 

Several studies have found that the most central sector in the cross-correlation of the 

daily stock price returns network is dominated by the financial sector (Pozzi, Di 

Matteo, and Aste, 2008; Yao and Memon, 2019; Tabak, Serra, and Cajueiro, 2010; 

Patwary et al., 2017; Majapa and Gossel, 2016; Kenett et al., 2010; Tang et al., 

2018; Di Matteo, Pozzi, and Aste, 2010; Brida and Risso, 2010), industrials (Wu, 

Zhang, and Zhang, 2019), and consumer services (Yao and Memon, 2019). 

Furthermore, the stock market network is heavily dominated by the financial sector 

due to the composition of highly connected assets (Tse, Liu, and Lau, 2010) and 

stocks from the financial industry form the backbone of the graph tree (Coelho et al., 

2007). 

 

Early works in this area focused primarily on different approaches to sectoral 

analysis for the stock market network, such approaches include: (1) the number of 

stocks for each sector among the highest values for the selected centrality measures 

(Huang et al., 2020), (2) the average value of the selected centrality measures 

computed for each industry based on the entire stock price return network (Coletti 

2016), (3) sector analysis based on the pattern of the entire assets network non-

aggregated at the industry level (Memon, Yao, and Tahir, 2020), as well as (4) the 

sectoral stock market network based on the correlations of the sectoral indices 

returns (Sharma et al., 2017). 

 

The method employed in the literature is originally based on the cross-correlation of 

stock returns. However, this study applied a different method to analyze the 

economic sector network. First, I use the standard methodology proposed by 

Mantegna (1999), based on the Pearson correlation coefficient of log-return of stock 

price and the minimum spanning tree (MST) approach to reduce the complexity of 

the network. The MST prunes graph and the most relevant connections in the stock 
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market network are identified. The MST is a tree consisting of N-1 edges connecting 

N vertices, in which a path exists between each vertex without cycles and loops such 

that the total distance of the matrix is minimized. Then, I aggregate the stock 

correlation network to the level of the economic sector. The two-stage procedure is 

used to isolate the sectoral backbone network. 

 

This study aims to (i) investigate the structure of the sectoral network, (ii) identify 

the most important sectors occupying a central position in the cross-correlation 

network, and (iii) reveal the peripheral sectors. 

 

This study examines the structure of the aggregated sectoral network of the US stock 

market in the 2015-2019 period. Empirical results show that the network of 

economic sectors consists of two interconnected parts. Both parts of the graph have a 

star-like structure. Based on a uniform ranking of sectors in terms of centrality 

measures, my findings reveal a strong core/peripheral structure of the network. This 

suggests the predominance of the central group of industries over the group of 

sectors located in the outer parts of the network. The level of relevance of the sector 

in the network shows the direction of the movements in stock prices in the financial 

market. 

 

This paper has been divided into the following parts: Section 2 describes the 

methodology, specifically the construction of the MST-based network of economic 

sectors and network centrality measures; in Section 3, the data set is presented; 

Section 4 presents and discusses the results, and finally in the last section, 

concluding remarks are drawn. 

 

2. Research Methodology 

 

To perform analysis consistent with the purpose of the work, the construction of the 

MST network at the level of sector aggregation should be introduced. I also present 

centrality measures dedicated to undirected network analysis. 

 

2.1 Cross-Correlation Network Based on a Minimum Spanning Tree 

 

The stock correlation network consists of nodes denoting stocks and edges 

connecting the assets based on the cross-correlation coefficient between the log-

return series of stocks. The result is a fully-connected network with N vertices and 

N(N-1)/2 edges. Due to the complexity of the stock return network, the data noise 

should be filtered out, extracting the most useful information arising out from the 

relevant connection by pruning the original graph. The most common method of 

network filtration is the minimal spanning tree (Lee and Nobi, 2018; Jeude, Aste, 

and Caldarelli, 2019; Bhattacharjee, Shafi, and Acharjee, 2019) as a result of which 

the dimension of the network is reduced from N(N-1)/2 to N-1. The network 

construction method based on the MST approach is briefly outlined below. 
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First, I use the log-return of the stock price defined as: 

 

     (1) 

 

where  is the closing price of the company’s stock at day t.  

 

Next, I compute the similarity between each pair of stocks i and j applying the 

Pearson correlation coefficients among all price return time series: 

 

     (2) 

 

where  denotes mean value for the investigated period.  

 

The correlation coefficient does not satisfy the three axioms required for the 

fulfillment of the Euclidean metric. In the next stage, the cross-correlation 

coefficients constituting elements of the C matrix with dimensions N x N are used to 

evaluate the distance metric by an appropriate transformation so that all axioms are 

fulfilled: 

 

      (3) 

 

Due to the properties of the Pearson correlation coefficient, which varies from -1 to 

1, the value of the distance metric ranges from 0 to 2. If the pair of stocks is 

completely correlated , then the distance metric (dij) is 0, and if the pair of 

stocks is completely anti-correlated , then the distance metric (dij) is 2. 

 

Finally, based on Mantegna (Mantegna 1999) the fully-connected matrix D of 

distance metrics (dij) is utilized to build the MST network of the stock market such 

that N vertices are connected using N-1 edges where the sum of all link weights is 

minimized. The Kruskal algorithm (Kruskal 1956) has been adopted to construct the 

MST network. The obtained MST network T=[tij] is weighted and undirected. To 

obtain a dichotomous network, a transformation was made according to the 

following formula: 

 

      (4) 

 

All computations were performed using the NetMiner software (Cyram, 2021). 
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Next, the network connections are aggregated at the level of economic sectors. For 

this purpose, the number of connections between enterprises included in individual 

sectors is summed up: 

 

     (5) 

     (6) 

 

The construction of formula (5) ensures the symmetry of the matrix, and formula (6) 

allows for a self-loop. As a result, an undirected and weighted network with loops 

and self-edges is created. 

 

The network of economic sectors is constructed based on the MST method, which 

by definition does not contain loops and self-edges. First, I normalize each weight of 

edges where the absolute maximum of elements in the normalized matrix is assigned 

to the value of the normalized criterion. The transformation is as follows: 

 

      (7) 

 

The normalized values are in the range . Next, I use equation (3) to obtain the 

distance metric, which in this case ranges from 0 to  due to the range of 

normalized edge weights . Finally, the MST network is built by re-applying 

Kruskal’s algorithm, receiving an undirected and weighted network without loops 

and self-edges. 

 

The created network is defined as the MST-based network of economic sectors 

(MST-NES), which consists of 11 vertices with each vertex representing one sector 

of activity. 

 

2.2 Centrality Measures 

 

Centrality measures describe the network position of nodes in a graph (Freeman, 

1978). I used six different centrality measures, a concise description of which is 

provided below. 

 

1. Degree: In weighted networks, the degree of a vertex is called node strength 

(Opsahl, Agneessens, and Skvoretz, 2010), expressed as the sum of edge 

weights connected to that node, defined as follows: 

 

     (8) 

 

where wij represents an element of the weighted adjacency matrix, which are the 

weights of the links between nodes i and j. 



   Sectoral Analysis of the US Stock Market through Complex Networks 

 

 956  

 

 

2. Degree centrality: The simplest representation of the local position of nodes in a 

network is the standardized degree centrality, computed as: 

 

      (9) 

 

3. Closeness centrality: The closeness centrality index of a vertex is the inverse of 

the sum of all the shortest paths between the node and all other vertices in the 

graph, and then normalized by multiplication by the expression N-1 

 

     (10) 

 

where  means the shortest paths from nodes i to j. 

4. Betweenness centrality: The betweenness centrality index of a vertex k is the 

total number of the shortest paths between each pair of vertices in the graph that 

pass through node k 

 

   (11) 

 

where gikj expresses the number of the shortest paths from nodes i to j passing 

through node k; gij is the total number of the shortest paths from nodes i to j. 

 

5. Eigenvector centrality: The centrality of the eigenvector of node i is recursively 

proportional to the weighted sum of the eigenvector centralities of its neighbors. 

 

   (12) 

 

where  indicates the proportionality constant (eigenvalue), ej corresponds to 

the eigenvector centrality score. 

 

6. Eccentricity centrality: The eccentricity of node i is the maximum length of the 

geodesic distance that connects node i to all other nodes in the network. 

 

    (13) 

The larger the degree centrality, closeness centrality, betweenness centrality, 

eigenvector centrality, and the smaller the eccentricity centrality, the more central 

the node is. 

 

3. Data Set 

 

I investigated the daily closing prices of N=496 stocks of the S&P 500 Index that 

were continuously traded in the US market from July 7, 2015, to December 31, 
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2019, including a total of 1,131 trading days. Data time series were obtained from 

Yahoo Finance (http://finance.yahoo.com). The minimum spanning tree network is 

presented in Figure 1. The MST is an undirected and unweighted network consisting 

of 496 nodes and N-1=495 edges. 

 

Figure 1. The MST network of 496 stocks 

 
Source: Own elaboration with NetMiner (Cyram 2021). 

 

The analyzed stocks are classified into 11 sectors within the classification of Yahoo 

Finance (2019). The specified sectors include Basic materials (BM, 19 stocks), 

Communication services (CS, 24 stocks), Consumer cyclical (CC, 67 stocks), 

Consumer defensive (CD, 35 stocks), Energy (EN, 27 stocks), Financial services 

(FS, 71 stocks), Healthcare (HE, 60 stocks), Industrials (IN, 71 stocks), Real estate 

(RE, 31 stocks), Technology (TE, 63 stocks), Utilities (UT, 28 stocks). 

 

4. Results 

 

4.1 Aggregate Network Structure at the Level of Economic Sectors 

 

The analysis applies to a higher scale of hierarchy in the network by grouping assets 

at the economic sector level. This approach enables the evaluation of how each 

sector affects the other industries. The MST-NES network (undirected and weighted) 

is reported in Figure 2, where the thickness level of the edges is labeled according to 

their weight, and the size of the vertices is proportional to the size of the degree as 

the sum of the weights. The MST network of economic sectors provides information 

about the structure of the US economic system. The MST sector network consists of 

two parts with a star-like structure, where the central nodes are utilities and 

consumer cyclical. The industrial sector, acting as an intermediary, plays a bridging 

role connecting both parts of the network. The MST network shows that these three 

sectors form the backbone of the tree. The strongest connections exist between the 
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CC-CS, UT-BM, UT-EN, and FS-RE sectors. The node strength (degree) for each 

sector is shown in Table 1. 

 

Figure 2. The MST-NES network. The thickness level of the edges is proportional to 

the weight of the link. The size of the vertices is proportional to the sum of the 

weights.  

 
Source: Own elaboration with NetMiner (Cyram 2021). 

 

Table 1. The node strength for each sector 
Sector Degree 

(sum of weights) 

Basic materials 1.246 

Communication services 1.246 

Consumer cyclical 4.397 

Consumer defensive 1.189 

Energy 1.218 

Financial services 1.991 

Healthcare 0.928 

Industrials 1.800 

Real estate 1.203 

Technology 0.983 

Utilities 4.999 

Source: Own calculation based on empirical research. 

 

The utilities sector has the highest degree of 4.999, followed by the consumer 

cyclical (4.397), financial services (1.991), and industrials (1.8). In contrast, the 

lowest degree is recorded in the healthcare sector (0.928) and technology (0.983). 
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I used multi-dimensional scaling (MDS) to analyze the similarity information 

visually. To generate the MDS map presented in Figure 3, the Principal Coordinate 

Analysis (PCO) has been applied, also referred to as Torgerson-Gower’s classical 

Multidimensional Scaling (c-MDS). The proportion explained is 0.901 (the larger 

value means that MDS is a better fit for the data). 

 

Figure 3. Multi-dimensional scaling map for the MST-NES network 

 
Source: Own elaboration with NetMiner (Cyram 2021). 

 

The MDS map shows two clusters. Cluster 1, marked with a blue loop, includes such 

sectors as (i) BM, (ii) EN, (iii) TE, and (iv) FS, which are linked by the UT central 

sector in the MST-NES network. Cluster 2, denoted by a red loop, contains the 

following sectors: (i) CS, (ii) CD, (iii) HE, which are connected indirectly by sector 

CC, and sector (iv) RE. However, both the central sectors (UT and CC) and the 

intermediary sector (IN) are on the outer section of the MDS map. These sectors are 

quite dissimilar from each other because of the intermediary role they play, 

connecting different parts of the network. 

 

4.2 Analysis of the Centrality Measures at the Sector Level 

 

In this section, the MST-NES sector centrality properties analysis is carried out. 

Additionally, the ranking of economic sectors is analyzed according to the sectors’ 

central position in the network. Centrality measures can be used to identify 

influential vertices in the network. The more central the nodes in the network, the 

more important the vertices are. Table 2 shows the centrality measures for the sector 

network while Figure 4 shows their graphical representation. 
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Table 2. Sectoral centrality measures for the MST-NES network 
Sector Degree 

centrality 

Closeness 

centrality 

Betweenness 

centrality 

Eigenvector 

centrality 

Eccentricity 

centrality 

Basic materials 0.125 0.370 0.000 0.286 4.072 

Communication 

services 

0.125 0.323 0.000 0.211 5.020 

Consumer 

cyclical 

0.440 0.455 0.533 0.413 4.254 

Consumer 

defensive 

0.119 0.323 0.000 0.201 5.077 

Energy 0.122 0.370 0.000 0.280 4.100 

Financial services 0.199 0.400 0.200 0.238 4.529 

Healthcare 0.093 0.323 0.000 0.157 5.337 

Industrials 0.180 0.526 0.533 0.351 3.277 

Real estate 0.120 0.294 0.000 0.117 5.337 

Technology 0.098 0.370 0.000 0.226 4.335 

Utilities 0.500 0.556 0.756 0.562 3.306 

Source: Own calculation based on empirical research. 

 

Figure 4. Sectoral centrality measures for the MST-NES network. Values on the 

right axis for eccentricity centrality 

 
Source: Own elaboration based on empirical research. 

 

When analyzing the level of centrality, the sectors should be sorted according to the 

centrality measures, in ascending order for the eccentricity centrality and in 

descending order for the degree, closeness, betweenness, and eigenvector centrality, 

respectively. 

 

From Table 2, one can find that there are three central vertices in the MST economic 

sector network. The utilities sector achieves the best results for the four measures of 

centrality, except for eccentricity centrality (it ranks second in terms of this 

measure). The other most central sectors are consumer cyclical and industrials. It is 

observed that the sectors of utilities, consumer cyclical, and financial services have 
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the largest degree centrality, which means that these sectors have a relatively high 

degree of linkage. The most central sectors due to the lowest eccentricity centrality 

value are (i) industrials (3.277), (ii) utilities (3.306), and (iii) basic materials (4.072). 

The above observations can be easily confirmed visually by analyzing the bar graph 

in Figure 4 and the radial plot in Figure 5. 

 

Figure 5. Radial chart for the following centrality measures: a) degree centrality; b) 

closeness centrality; c) betweenness centrality; d) eigenvector centrality 

 
 
 

 
Source: Own elaboration with NetMiner (Cyram 2021). 

 

With regard to centrality measures based on the shortest path length – closeness and 

betweenness centrality – utilities, industrials, and consumer cyclical sectors play a 

noticeable intermediary role. 

 

The methodological approach to the construction of the centrality measures is 

varied. This applies to the range of influence of the network structure. For example, 

degree centrality takes into account connections with the adjacent nodes, while other 

centrality measures include the broader context of the network structure. It should be 

noted that, unlike eigenvector centrality, measures such as closeness, betweenness, 

and eccentricity centrality take into account the shortest paths in the network. 

However, the specificity of the MST-based sector network means that all possible 
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connections between vertices have the shortest path length (Figure 2). In other 

words, there are no intermediate paths in the MST-NES network. 

 

To assess the central and peripheral nodes in the sectoral network, the concept of 

relative importance was utilized. For centrality measures defined as stimulants 

(degree, closeness, betweenness, and eigenvector centrality), the relative importance 

is the result of the quotient of the sector centrality measure and its maximum value 

over the entire network, represented as follows: 

 

    (14) 

 

where  is the centrality measure value for sector i. 

 

For the eccentricity centrality, which is a destimulant, the relative importance is the 

result of the relation between the value of the sector centrality measure and its 

minimum value in the entire network 

 

    (15) 

 

Next, all sectors are ranked in descending order with respect to the mean relative 

importance (Table 3). 

 

With regard to the mean relative importance (MRI) according to sectors, Table 3 

demonstrates that the following three sectors are central nodes in the MST network: 

(i) utilities (99.8%), (ii) consumer cyclical (78.2%), and (iii) industrials (72.7%). 

This classification assumes that if the mean relative importance exceeds 70.0%, then 

a sector is classified as the central node of the network. At the same time, sectors 

with mean relative importance below 40% are identified as peripheral vertices. The 

latter include such sectors as real estate (31.9%), healthcare (33.2%), consumer 

defensive (36.4%), and communication services (37.2%). Other sectors, including 

financial services (50.6%), basic materials (44.6%), energy (44.1%), and technology 

(40.4%), occupy an intermediate position in the network. 

 

Table 3. The relative importance of sector centrality measures 
Rank Sector Degree 

centrality 

Closeness 

centrality 

Betweenness 

centrality 

Eigenvector 

centrality 

Eccentricity 

centrality 

Mean 

relative 
importance 

1 Utilities 100.0% 100.0% 100.0% 100.0% 99.1% 99.8% 

2 Consumer 
Cyclical 

88.0% 81.8% 70.6% 73.6% 77.0% 78.2% 

3 Industrials 36.0% 94.7% 70.6% 62.4% 100.0% 72.7% 

4 Financial 

Services 

39.8% 72.0% 26.5% 42.5% 72.4% 50.6% 

5 Basic Materials 24.9% 66.7% 0.0% 50.9% 80.5% 44.6% 

6 Energy 24.4% 66.7% 0.0% 49.8% 79.9% 44.1% 
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7 Technology 19.7% 66.7% 0.0% 40.2% 75.6% 40.4% 

8 Communication 
Services 

24.9% 58.1% 0.0% 37.5% 65.3% 37.2% 

9 Consumer 

Defensive 

23.8% 58.1% 0.0% 35.8% 64.5% 36.4% 

10 Healthcare 18.6% 58.1% 0.0% 28.0% 61.4% 33.2% 

11 Real Estate 24.1% 52.9% 0.0% 20.9% 61.4% 31.9% 

Source: Own calculation based on empirical research. 

 

There should be no doubts in terms of identifying the three central sectors due to the 

large difference in MRI between the third and fourth sectors in the ranking, i.e., 

72.7% for industrials and 50.6% for financial services, respectively. The results of 

the sector centrality analysis in the network and the aggregate network structure 

(Fig. 2) are consistent with the results obtained using the mean relative importance 

approach. 

 

Nevertheless, the choice of peripheral sectors requires some explanation. For the 

three measures of centrality, closeness, eigenvector, and eccentricity, sectors at the 

periphery of the network achieve the worst results in terms of relative importance. 

The difference in relation to the technology sector, classified as the last one in the 

group of intermediate nodes, is relatively large. In addition, the betweenness 

centrality for these sectors is 0, although this result is the same as for the technology, 

energy, and basic materials sectors. 

 

In summary, objects with an MRI below 40% are classified into peripheral sectors. 

Sectors of intermediate centrality in the MST network include vertices for which the 

MRI is in the  range. Finally, nodes with the MRI value greater 

than 70% are classified as central sectors. 

 

5. Conclusions 

 

In this study, I have investigated the structure of the sectoral network using the 

complex network approach. I proposed a unique method to produce the network 

relationships between 11 sectors. Specifically, the construction of the network is 

based on the MST-Pearson correlation coefficient of the log-return stock, where the 

empirical data consist of daily closing prices of 496 stocks from the S&P 500 Index 

in the 2015-2019 period. 

 

Based on centrality measures, the results obtained indicate that the central nodes in 

the MST network of economic sectors are utilities, consumer cyclical, and 

industrials. The first two sectors are also the most connected nodes, and the 

industrials sector performs an intermediary role. However, the ranking of sectors in 

terms of individual centrality measures changed insignificantly. The relative 

importance of the sector centrality measure was used to produce a uniform ranking 

of sectors in terms of central/peripheral position in the network. This analysis 

confirmed the conclusions about the importance of the three sectors indicated 
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(utilities, consumer cyclical, industrials). The real estate, healthcare, consumer 

defensive, and communication services sectors were identified as peripheral nodes. 

The remaining sectors, i.e., financial services, basic materials, energy, and 

technology, were classified as intermediate vertices. 

 

The division into peripheral and intermediate sectors corresponds to the prepared 

MDS map (Figure 3). Four sectors identified as intermediate and four peripheral 

industries cluster together in cluster 1 and cluster 2, respectively. In other words, the 

peripheral sectors are similar to each other. The same applies to the nodes of the 

intermediate group. On the other hand, the three sectors classified as central are 

scattered on the MDS map due to the bonding of nodes from different areas of the 

network (Figure 2). 

 

The results of this study highlight that the position of the peripheral sectors is not 

a direct result of their degree – as opposed to the central sectors. For example, in 

terms of degree, communication services and real estate are ranked 5th and 8th, 

respectively. This means that the position of the peripheral sector in the MST-NES 

network is determined by the centrality measures, taking into account a wider 

network structure than connections to neighbor vertices. 

 

The results do not confirm previous research by (Pozzi, Di Matteo, and Aste, 2008; 

Yao and Memon, 2019; Tabak, Serra, and Cajueiro, 2010; Patwary et al., 2017; 

Majapa and Gossel, 2016; Kenett et al., 2010; Tang et al., 2018; Di Matteo, Pozzi, 

and Aste, 2010), which showed the importance and central position of the financial 

sector in the network. In this paper, while financial services rank third in terms of 

degree, this sector is classified into the group of intermediate industries. 
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