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Abstract: 

 

Purpose: The article presents the results of research on lithium iron phosphate energy storage. 

The subject of the study was to gain knowledge about the potential benefits of using this type 

of storage for storing energy from distributed sources. The goal was achieved, among other 

things, by estimating the efficiency, calculating the capacity and investment /operating costs 

of the tested technology.  

Design/Methodology/Approach: During the research, the following work was carried out: 

Comparative analysis of technical parameters, literature research, desk research. 

Findings: The research results showed possible positive effects of the use of lithium iron phos-

phate energy storage in micro-source systems due to the low internal resistance. The authors 

also emphasize the twice longer service life of the tested solution about acid batteries, which 

is particularly important in high investment costs. 

Practical implications: The dynamic development of distributed generation determines the 

growing interest in energy storage technologies. These solutions are tested in terms of the 

possibility of using them to stabilize the operation of power grids and the absorption of surplus 

energy. The storage technology described in this article is one of the few most promising for 

large-scale use. Distribution system operators can use the test results. 

Originality/Value: The survey attempts to fill a gap in the literature on the subject. The study 

provides practical answers about the characteristics of the described solution and the costs of 

its use. The results may encourage the use of this technology by companies from the energy 

sector as one of the solutions supporting the energy transition. 

 

Keywords: LiFePO4, energy storage, distributed generation, power engineering. 

 

JEL Classification: L80, N74, O33, O44, P42, Q21, Q52, Q55, Q56. 

 

Paper Type: Research paper. 

 

 

 

 
1University of Szczecin, Szczecin, Poland, ORCID 0000-0002-6039-0202, 

marcin.kopiczko@usz.edu.pl;  
2University of Szczecin, Szczecin, Poland, ORCID 0000-0002-9594-1772, 

jaroslaw.jaworski@usz.edu.pl;  

mailto:marcin.kopiczko@usz.edu.pl
mailto:jaroslaw.jaworski@usz.edu.pl


Characteristics of the Parameters of Lithium Iron Phosphate Energy Storage in the 

Context of their Usefulness in the Management of Distribution Grid 

 818 

1. Introduction 

 

The electric power industry is a particular sector of the economy, and its products are 

crucial for the effective operation of other enterprises and economic development 

measured by GDP growth. The modern world needs energy, and its consumption has 

been growing globally. This growth stems mainly from the civilizational product, 

which requires more power to operate all economic sectors (Anwar et al., 2017). Civ-

ilizational development also drives consumption which is inextricably linked to the 

growing use of energy throughout the production cycle. An additional risk is the con-

centration of global oil and gas resources in several countries, which may bring polit-

ical criteria to the fore rather than economic considerations in investment decision-

making (Bilan et al., 2019; Chen et al., 2018). The production and use of electric 

power involve greenhouse gas emissions and devastation of the environment, mainly 

driven by gas emissions from burning fossil fuels, particularly coal (Lavrinenko et al., 

2019; Brożyna et al., 2017).  

 

One of the most severe problems these days is excessive CO2 emissions causing a 

greenhouse effect. Therefore, reducing CO2 emissions and thus preventing climate 

change has become a critical goal that has become a challenge for the global energy 

sector (Tvaronavičienė et al., 2017; Dudin et al., 2019; Vlasov et al., 2019). To reduce 

emissions, it is necessary to find and use highly efficient and cost-effective energy, 

including from renewable sources. However, the development of distributed energy 

sources has a negative impact on power grids, which were built according to the tra-

ditional energy model. It assumed transmission and energy distribution only in one 

direction, i.e., from large-scale generation through transmission and distribution grids 

to the end customer.  

 

The dynamic increase in the number and capacity of RES connected to grids makes 

the energy flow in the case of distribution grids more and more bi-directional. This is 

of great importance for the functioning of Distribution System Operators, i.e., entities 

responsible for managing such grids, because it changes the way they operate, partic-

ularly in the field of traffic management and maintenance of quality parameters of the 

supplied energy (Drożdż, 2018). To enable the correct and failure-free operation of 

the grid in new conditions, it is necessary to develop and use new methods and tools 

supporting the system operation. In this respect, energy storage devices may play a 

vital role in this respect, which allows for the storage of surplus of produced energy 

and then its use for balancing and improving quality parameters depending on the 

system services provided. (Collins et al., 2017; Savitz et al., 2019).  

 

This article presents the outcomes of testing under an R&D project, “Innovative ser-

vices of an energy storage system to improve the quality and efficiency of use of elec-

tric power” (Innowacyjne usługi system magazynowania energy podnoszące jakość i 

efektywność wykorzystania energy elektrycznej) carried out by Enea Operator and 

co-financed by the National Centre for Research and Development through the 
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European Regional Development Fund (ERDF) -  Smart Growth Operational Pro-

gramme, action 1.2, under Project POIR.01.02.00-00-0232/16. 

 

2. Literature Review 

 

Energy storage is a concept widely researched in several recent decades. It combines 

various technologies that can be linked to RES (e.g., solar power). Depending on the 

intended purpose, the energy thus produced can be stored for later use (The act of 

10.04.1997; Announcement of November 29, 2018; The act of 20.02.2015). 

 

For many years now, research has focused on studying the feasibility of energy storage 

technologies, mainly for RES energy storage (Abedin and Rosen, 2011). In this con-

text, several research projects presented in peer-reviewed literature reviewed energy 

storage systems in terms of either re-electrification or supporting the power grid. How-

ever, none of these studies provides any tool to optimize the operation of energy stor-

age systems in both applications, considering market prices for electric power and the 

investment potential of future investors (Wang et al., 2002; Basu, 2010). 

 

González et al. (2004) developed an algorithm to optimize and simulate a hybrid wind 

power/hydrogen system utilizing energy storage systems (Saxena et al., 2009; Linden 

et al., 2002). In the same context, Schenk et al. (2007) study the feasibility of energy 

storage systems to integrate wind power in The Netherlands better. The study found 

that connecting energy storage to the power grid supports it at times of large energy 

amounts fed by high winds, thus absorbing energy for hydrogen production (Daniel 

and Besenhard, 2011; Liu et al., 2012). 

 

To find solutions for energy security and reduce greenhouse gas (GHG) emissions, 

researchers have studied the implementations of energy storage systems on islands. 

Busuttil (2008) studied the prospects for high-RES integration in Malta, including a 

conversion system and the use of energy storage which might support the power grid 

(Chen et al., 2009; Zakeri and Syri, 2015). 

 

Salgi and Lund (2008) studied the perspectives of energy storage systems in western 

Denmark in grid support applications. The simulation model developed in that study 

demonstrated that even without energy storage constraints, energy demand projected 

for 2030 could be met at market price (Hadjipaschalis et al., 2009). 

 

Similarly, Carr et al. (2016) assessed the operation of energy storage fed from a wind 

turbine connected to the power grid in Rotherham, UK. Optimization of the system to 

maximize revenues (i.e., sales of electric power) accompanied by minimized operating 

costs (i.e., cost of electric power) showed that the prices and demand for electric power 

play a significant role in the economic life of the system (Zhao et al., 2016; Miller and 

Winters, 2012; De Souza, 2011). 
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Colbertaldo et al. (2019) presented a simulation of the Californian power system with 

high-RES penetration that used energy storage. The study found that the complete 

transition of the Californian grid to renewables needed a massive increase in power 

output of solar/wind processors accompanied by a matching energy storage system 

(Carija et al., 2012; Xia et al., 2015). Weidner et al. (2018) also demonstrated the 

prospects of using energy storage systems as a business option in power-to-mobile 

and power-to-power systems in Germany, Belgium, and Iceland.  The “power-to-

power” scenario involves the production of hydrogen from excess RES using water 

electrolysis systems and re-feeding the grid with the stored energy using fuel cells 

(FC) at times of significant shortages of power. For large-scale systems, the authors 

found that the cost of electric power exceeds 500 EUR / MWh and is expected to fall 

to more than 300 EUR / MWh, which is a relatively high price compared to other 

technologies (Alami, 2015; Brown et al., 2014). 

 

Alshehri et al. (2019) documented energy storage as a support service for power grids. 

The study simulated four scenarios of the power grid in a northern region of The Neth-

erlands, including a baseline scenario (the existing system) and a scenario with energy 

storage systems used for frequency control (Cabeza et al., 2015). A simulated reduc-

tion of rotational inertia resulting in steeper frequency drops demonstrated that con-

necting topologies based on energy storage improved the frequency lowest point (i.e., 

frequency nadir) to more than 0.15 Hz. 

 

3. Research Methodology 

 

This study is focused on lithium iron phosphate (LiFePO4) energy storage systems 

with the specifications provided in Table 1 (accompanied by the specifications of the 

BMS management system). The combined capacity of the studied energy storage sys-

tems is 20 Ah. 

 

Table 1. Technical parameters of LiFePO4 energy storage 
Electrical specifications LiFePO4 (38120S battery) 

Nominal voltage 3.2 VDC 

Critical voltage 4.2 VDC 

Nominal capacity 10 Ah 

Internal resistance < 6 mΩ 

Maximum charge voltage 3.65 ± 0.5 V 

Minimum discharge voltage 2.5 – 2.0 V 

Recommended charge current 1C (10A) 

Max. charge current 2C (20A) 

Max. impulse current 10C (100A) 

Max. discharge current (continuable) 3C (30A) 

Standard discharge current 1C (10A) 

BMS  HCX-D138 

Charge voltage 57.6 V 

Max. charge/discharge current (continua-

ble) 

80 A 
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OVERCHARGE  

Overcharge cut-off voltage 3.90±0.025 V 

Overcharge detection time 0.5~2.0 s 

Overcharge cut-off “release” 3.80±0.05 V 

DISCHARGING  

Cut-off discharge voltage 2.00±0.05 V 

Discharge detection time 50~200 ms 

Discharge cut-off “release” 2.30±0.1 V 

BALANCING  

Voltage at which balancing is switched on 

(for a single cell) 

3.60±0.025 V 

Balancing current for a 

single cell 

72± 10 mA 

Source: Study data. 

 
The specifications determined by the discharging/charging process of LiFePO4 en-

ergy storage were compared to the specifications provided by the manufacturer. On 

this basis, capacity determination errors δC i δD were estimated according to the equa-

tions. The results are shown in Table 2.  
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where: 

EN – nominal energy provided by the manufacturer; 

ED – energy determined on discharging;  

EC – energy determined on charging; 

δC – error of determination of capacity on charging; 

δD – error of determination of capacity on discharging. 

 

The efficiency of energy storage in the tested batteries was also estimated using a 

formula for a single case. The formula used energy values ED and EC for charging and 

discharging with 6A (other values were not available due to the maximum charge cur-

rent which was restricted by the current output of chargers, i.e. 10A). The formula 

used the values of energy calculated based on the following formula: 
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Calculations for charging and discharging of the energy storage system with 6A 

show that efficiency is 92.83%. 
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Calculations in Table 2 use watt-hour rated capacity of energy storage (Wh). The am-

pere-hour capacity stated by the manufacturer is 20Ah (two parallel strings of 16 cells, 

each with rated capacity of 10 Ah and rated voltage 3.2 V). The watt-hour capacity 

can be, therefore, determined using the following relationship: 

 

                             Wh,UEE nomAhWh 102425120 ===                                   (3) 

 

Table Σφάλμα! Δεν υπάρχει κείμενο καθορισμένου στυλ στο έγγραφο.. Calculation of 

the capacity of a LiFePO4 accumulator based on discharging specifications. 
DISCHARGING 

I  

[A] 

t  

[s] 

ED [Wh] 

(sum of samples) 

EN [Wh] δD  

[%] 

(formula 1a) 

6 13,040 1,065.83 1,024 4.08 

10 7230 1,053.09 2.84 

15 4,849 1015.71 0.81 

20 3,630 985.36 3.77 

25 2,702 913.77 10.76 

Note: EN – nominal energy provided by the manufacturer;ED – energy determined on dis-

charging; δD – error of determination of capacity on discharging; I  – discharge current; 

t – time of discharging, * energy E and error δ are calculated for Version 2: based on for-

mula (2.1) and based on samples 

Source: Own elaboration based on discharging specifications. 

 

A major consideration for using energy accumulators for cost optimization of 

prosumer systems is the cost of energy storage. This cost should consider both the 

capital cost and useful life of the technology. Useful life of electrochemical accumu-

lators such as LiFePO4 depends heavily on cyclical DOD (depth of discharge) level. 

In determining the cost of energy storage in LiFePO4 accumulators, DOD at 80% can 

be assumed. The cost of energy storage in the accumulator can be determined by this 

simplified relationship: 

 

                                )kWh(N)DOD(ES

I
ES

CNDOD
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K
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=

                                       (4) 

where:  

KES – cost of energy storage [PLN/kWh]; 

KI – investment cost; 

CN(kWh) – rated capacity of accumulator [kWh]; 

NES(DOD) – cycle life at average DOD; 

DOD – average depth of cycle discharge [0 – 1]; 

 

For the LiFePO4 accumulators with the BMS system tested in this study, the cost of 

energy storage will be: 
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The calculations consider the capital cost of LiFePO4 accumulator with 1.024 kWh 

capacity.  

 

This cost decreases with increasing capacity of the accumulator. For a 6.6 kWh ac-

cumulator equipped with BMS system it is: 
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Capital cost of a LiFePO4 accumulator with 1.024 kWh capacity compared to its 

rated capacity for the battery tested is: 
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Capital cost of a LiFePO4 accumulator with 6.6 kWh capacity compared to its rated 

capacity for the battery tested is: 
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4. Conclusions 

 

Battery accumulators with LiFePO4 cells are characterized by low internal resistance, 

making them suitable for working in systems designed to reduce output power fluctu-

ations resulting from RES micro sources.  

 

The lithium iron phosphate technology ensures very high current efficiency, long ser-

vice life (according to the manufacturer, approx. 2000 cycles), and, above all, high 

energy efficiency exceeding 92% for the tested energy storage. In many types of ap-

plications, energy efficiency is critical. These parameters can be achieved by using 

the required appropriate BMS protection system, which ensures the correct character-

istics of the storage tank operation, among other things, by preventing overloading or 

unloading.  

 

High capital cost (about 4545 PLN/kWh) is partially compensated by a very long cycle 

life of the accumulator and excellent performance; moreover, it has been proven that 

this cost decreases with the increasing capacity of the storage. The primary advantage 
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of LiFePO4 accumulators over acid batteries is high DOD (80% in lithium iron phos-

phate versus 50% in acid batteries). In addition, these batteries have more than double 

cycle life, which makes them more cost-effective than batteries based on acid tech-

nology, despite the higher capital cost.   
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