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Abstract:  

 

Purpose: The main purpose of the article is to identify the demand curve and to forecast 

demand in subsequent periods using the Metropolis-Hastings algorithm.  

Design/Methodology/Approach: The Metropolis-Hastings algorithm belonging to the 

Markov Chain Monte Carlo was used to identify the demand curve and to forecast the 

demand in subsequent periods. This method consists in generating (drawing) a sample in 

accordance with the modified distribution and the possibility of rejecting a new sample in 

case of insufficient improvement of the quality index. 

Findings: The results of the conducted research indicate that the presented solution of 

generating a sample in accordance with the modified distribution and the possibility of 

rejecting a new sample in the event of insufficient improvement of the quality index is 

effective in identifying and forecasting the demand. 

Practical Implications: The algorithm presented in the article can be used to forecast stays 

taking into account the product life curve. 

Originality/Value: A novelty is the use of the Metropolis-Hastings algorithm to identify the 

demand curve and the forecast of demand in subsequent periods to determine the strategy of 

long-term products by analyzing the sales volume of the product. 
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1. Introduction 

 

Forecasting future demand is essential to making supply chain decisions. 

Undoubtedly, historical information about demand can be used to forecast future 

demand and such analysis affects the functioning of the entire supply chain. Demand 

forecasts form the basis of all supply chain planning. Consider the division of 

processes performed in the push / pull supply chain (Chopra and Meindl, 2007). Pull 

processes are initiated by an order placed by the customer, while push processes are 

initiated and performed while waiting for the order. When considering these two 

options for push processes, you should plan your level of activity, be it production, 

transportation, or any other planned activity.  

 

With pull processes, you need to plan the level of available bandwidth and 

inventory, but not the actual amount of products to be made. In both cases, the first 

step to be carried out is to forecast customer demand. In a way, one might be 

tempted to treat demand forecasting as a kind of art used so as not to leave 

everything to chance. What the company knows about the previous behavior of its 

customers is reflected in their future behavior. Demand is influenced by various 

factors and can be predicted with at least some probability if the firm can identify the 

relationship between these factors and future demand.  

 

To forecast demand, firms must first identify the factors that affect future demand 

and then establish a relationship between those factors and future demand. When 

forecasting demand, enterprises must maintain a balance between objective and 

subjective factors. In the presented considerations we focus on the methods of 

quantitative forecasting, however, it should be remembered that companies must 

take into account human input when preparing the final forecast. The supply chain 

can experience significant benefits from improving demand forecasting due to 

qualitative human factors. The company must have knowledge of many factors that 

are related to the forecasting of demand. 

 

The problem faced by economists, managers, and people responsible for defining 

long-term strategies is solving the task, where by analyzing the volume of 

sales/orders for a product in the initial phases, both the demand for this product in 

subsequent periods and the market absorption (total sales volume on the market) 

should be predicted. The amount of demand depends on the phases according to the 

product life cycle (product creation, launch (development), growth, maturity (market 

saturation), decline) (Mruk and Rutkowski, 1999). The Metropolis-Hastings 

algorithm (Geyer, 2011; Gamerman and Lopes, 2006; McElreath, 2020) belonging 

to MCMC (Markov Chain Monte Carlo) was used to identify the demand curve and 

forecast the demand in subsequent periods.  

 

The sample is generated according to the modified distribution and the possibility of 

rejecting a new sample in case of insufficient improvement of the quality index. 
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2. Methodology 

 

2.1 Monte Carlo Sampling with Markov Chains 

 

Monte Carlo sampling with Markov chains (MCMC) (Gamerman and Lopes, 2006; 

Geyer, 2011) is a class of sampling algorithms using the Monte Carlo method for a 

certain probability distribution. As a result of sampling, we obtain a Markov chain 

that has a distribution similar (convergent) to the distribution we are looking for. 

This technique is usually used to sample complex probability distributions. The 

greater the number of samples, the more accurately the sample distribution 

corresponds to the desired distribution. With MCMC, we create sequence as samples 

of a random variable (s) that can be used to evaluate the objective function against 

that variable. These chains are stochastic processes that move randomly according to 

an algorithm. Unlike the Monte Carlo method (Monte Carlo random simulation), the 

samples used in MCMC are correlated. 

 

The main problem of multivariate systems depends on identification of unknown 

parameters where the number of observations needed to estimate increases 

exponentially with the increase in the number of dimensions (Geyer, 2011). Monte 

Carlo methods using Markov chains are largely immune to the dimensional problem. 

These methods do not require an analytical solution, nor do they search the entire 

problem space (set of possible solutions), they rely on iterated sampling. Each 

consecutive drawn sample focuses (evaluates) more and more precisely around the 

areas of the distribution with the highest probability. 

 

One of the MCMC algorithms is the Metropolis-Hastings algorithm (Geyer, 2011; 

Gamerman and Lopes, 2006; McElreath, 2020). This method consists in generating 

(drawing) a sample in accordance with the modified distribution and the possibility 

of rejecting a new sample in case of insufficient improvement of the quality index. 

 

2.2 Metropolis-Hastings Algorithm 

 

The Metropolis-Hastings algorithm generates a series of samples, where the standard 

deviation of the samples decreases with increasing number of the sequence. The 

empirical distribution determined on the basis of the selected samples tends to the 

distribution of the searched  (Geyer, 2011; Gamerman and Lopes, 2006). The 

elements of the sequence of samples  are formed iteratively, where the 

distribution of the next sample depends only on the current value of the sample 

(according to the Markov property, the future does not depend on the past when the 

present is known). 

 

In particular, at each step  we randomize a sample distribution which 

depends on the last value in the chain (the value obtained in the preceding step), i.e. 

. Then, with a certain probability, the drawn sample is either accepted or 

rejected. In case of rejection, the value from the preceding step is taken as the 
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current value of the sample, i.e.  (and the current value is reused in the 

next iteration). In case of acceptance we take . The acceptance probability is 

determined by comparing the function value for the drawn sample with the function 

value for the last element in the chain (compare  with ). 

 

Algorithm: 

1. At the time , we draw the sample  for the apiori distribution , 

which represents the initial state in the Markov chain. We define the 

transition probability function from state y to state x. Additionally, 

we define the number of iterations n. 

2. Let . 

3. Randomly select a candidate  for the transition probability distribution 

. 

4. We determine the value of the function  (discussed below in this 

example for the identification of the product life cycle is selected as a 

function of the likelihood function). 

5. We calculate the acceptance rate . 

6. Randomly select a number u from the uniform distribution on . 

7. Another element in the Markov chain 

8.  

9. If , then we go back to point 2, otherwise we stop the algorithm. 

 

2.3 Identification of Demand Size 

 

Product lifecycle is the period in which the product is present on the market. This 

cycle consists of four phases: 

 

• the launch (of the manufacturer of the goods primarily consist of informing 

customers about the appearance of the product on the market); 

• increase in sales (in the growth phase, the fastest increase in sales occurs, 

which reduces the unit production costs); 

• saturation/maturity (sales growth is weaker, demand mainly from regular 

users of the product); 

• decrease in sales (demand for the product decreases). 

 

The product life cycle curve is a curve that represents the dependence of the quantity 

of demand on time. The Y axis shows the quantities of demand, and the X axis the 

moments. Knowing the product life cycle, you can easily make the right decisions 

by the company at any time (invest in advertising, match production lines to the 

demand, look for additional recipients, lower the price for the product, and finally 

withdraw the product from the market). Of course, having the entire history of data, 

you can determine the curve corresponding to the product life cycle.  
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Undoubtedly, a significant problem from the economic point of view is to predict a 

change in demand over time and to make predictions of demand in the future. 

Therefore, an important problem is the identification of the product life cycle curve 

based on the information available in the initial phases. The Metropolis-Hastings 

algorithm will be used to solve such a task. 

 

3. Problem Definition 

 

The problem faced by people responsible for defining long-term strategies is solving 

the task, where by analyzing the volume of sales/orders for a product in the initial 

phases, both the demand for this product in subsequent periods and the market 

absorption (total sales volume on the market) should be predicted. The Metropolis-

Hastings algorithm (Gamerman and Lopes, 2006; McElreath, 2020) have been used 

below to identify the demand curve and forecast the demand in subsequent periods. 

The size of the demand depends on the phases according to the product life cycle - 

product creation, introduction to the market (development), growth, maturity 

(market saturation), decline, e.g., the growth and maturity phases are shown in 

Figure 1. 

 

Figure 1. Demand for the product over time 

 
Source: Own creation. 

 

Let  be a probabilistic space and the random variable  has a gamma 

distribution (Ross, 1997). 

 

Figure 2. Graph of the gamma distribution density function f (x, b, c) 

 
Source: Own creation. 
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Density function: 

 

 

(1) 

and 

 

 
 

the parameter  represents the shape parameter, while - the scale 

parameter. 

 

The distribution of the random variable: 

 

 
(2) 

 

and . Figure 2 shows the values of the gamma distribution density 

function depending on the magnitude of b and c. 

 

Our task is to estimate the total number of demand for a product  by observing 

the demand  in successive periods, where  and  

means the demand cumulated up to the moment i and . According to the 

above notation .  

 

Let the random variable  denote the life of the product (e.g. estimating the 

production for the next 5 years, we do not have a guarantee that during this time the 

market will not enter a new type of product and sales will decrease drastically). If  

of the product has been sold by the time t and the total market demand (absorption) 

for the product is , then we can assume: 

 

 
(3) 

 

If we assume . Thus, the demand in the period  is modeled 

using the equation of state: 

 

 (4) 

 

where  is a sequence of independent random variables with the distribution 

 for  and the function  is given by formula (1). 
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Based on the sequence describing the volume of demand  to determine the 

parameters a, b, c in models (4), we use the LSM (Lieberman and Hillier, 1990; 

Chow, 1995; Wehrens, 2011; Hastie, Tibshirani and Friedman, 2009; Walesiak and 

Gatnar, 2009). For this, we solve the task: 

 

 

(5) 

 

the estimated parameter  corresponds to the projected total demand for the product, 

while  and  are estimators of the gamma distribution (shape and scale 

respectively). 

 

If we want to predict the volume of demand in the next k periods, we estimate as: 

 

 
 

In order to accurately evaluate the parameters , the vector of start parameters 

should be given. We will use the Metriopolis-Hastings algorithm to determine the 

starting values. 

 

4. Implementation the Metropolis-Hastings Algorithm 

 

From equation (4) we have: 

 

 
(6) 

 

 (7) 

 

From (4) - (7) we have that for the set parameters  the random variable  

has a normal distribution . For fixed  we create a function: 

 

 

(8) 

 

where  is the density function of the distribution  
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The likelihood function value (Hastie et al., 2009), (Chow, 1995), (McElreath, 2020) 

for the sequence  is defined as follows: 

 

 (9) 

 

where  denotes a piori distribution for parameters . Below, we 

assume stochastic independence for the above - mentioned parameters, therefore: 

 

 (10) 

 

Figure 3. Sequence of values for parameter a 

 
Source: Own creation. 

 

From (9) - (10) the logarithm of the likelihood function: 

 

 
 

(11) 

 

Figures 3 - 6 for the determination of Markov chains using Monte Carlo simulation 

for the identification of the model parameters (5) are presented below. The last 

20,000 elements from each of the sequence were selected as values for the unknown 

parameters. 

 

Table 1. Basic statistics for unknown parameters 

 a b c  
Average value 30285.38964 2.0270419 29.9951382 75.424009 

Standard deviation 73.17689 0.0663256 0.9532362 3.975294 

Median 30286.76535 2.0291391 29.8442083 74.191500 

Source: Own creation. 
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Figure 4. Sequence of values for parameter b 

 
Source: Own creation. 

 

Figure 5. Sequence of values for parameter c 

 
Source: Own creation. 

 

Figure 6. Sequence of values for parameter  

 
Source: Own creation. 

 

The figures below show the fit of the product life cycle curve (demand versus 

period) and the cumulative demand curve (Figure 7 and Figure 8). 

 

Figure 7. Product Life Cycle Curve Fitting 

 
Source: Own creation. 
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Figure 8. Matching total demand 

 
Source: Own creation. 

 

5. Conclusions 

 

The article presents the Metropolis-Hastings algorithm of identification for the 

demand curve and the demand forecast. The method consists in generating a sample 

in accordance with the modified distribution and the possibility of rejecting a new 

sample in case of insufficient improvement of the quality index. The volume of 

demand for the product in subsequent periods as well as the market absorption 

capacity were estimated as the total number of demand for the product by observing 

the demand in subsequent periods.  

 

Knowing the product life cycle, it is possible to make appropriate decisions by the 

company, but having the history of data we can determine the curve corresponding 

to the product life cycle. A significant problem from the economic point of view is 

forecasting a change in demand over time and making predictions of demand in the 

future. The main problem of identification of multidimensional systems i that when 

the number of dimensions increases, the number of observations needed to estimate 

the unknown parameters increases exponentially. The applied Monte Carlo method 

using Markov chains is largely resistant to the problem of dimensionality, does not 

require an analytical solution and does not search the entire problem space, rely on 

iterated sampling. 
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