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Abstract: 

 
Purpose: The article deals with banks' vulnerability to insolvency. We discuss the impact of 

the CoCo write-down/write-up bonds issuance on the bank solvency. Such instruments absorb 

losses in two ways: 1) When a bank gets in trouble, the payment of interest is ceased, and 2) 

If the financial standing of the bank further deteriorates, its CoCo bonds are written down. 

Reversing it, when the bank solvency improves, the CoCos are gradually written up, and the 

payment of interest is restored. The investment in the CoCo bonds is risky. That is why they 

offer a greater interest rate than straight bonds. Hence there is a trade-off: loss absorption 

versus profitability.  

Design/Methodology /Approach: As a measure of insolvency, we consider the probability of 

the implementing resolution process, i.e., as it is called in actuarial sciences, the probability 

of ruin.  

Findings: We show that depending on the CoCo bonds' profitability, the additional issuance 

of the CoCos may reduce the probability of ruin. In this respect, we propose a theoretical 

explanation for the optimum share of CoCos in an institution's liabilities.  

Practical implications: Our findings may give the supervisory authorities a useful tool to 

determine the fair share of Additional Tier One (AT1) CoCos to fill the Pillar 2 bank capital 

layer. The model proves to be useful for setting the optimum size of Restricted Tier One (RT1) 

CoCos in the insurer's liabilities as well. 

Originality/value: The science lacks theoretical background for CoCos' optimal size in 

issuers' liabilities. Besides, we provide a new measure of bank insolvency. Contrary to the 

typical approach with a finite time horizon, we choose the default probability at any moment 

in the future as a measure of insolvency.  
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1. Introduction 

 

Contingent convertibles (CoCos) are subordinated hybrid securities with an 

automatic conversion provision which enables issuers (banks or insurance 

companies) to exchange bonds for common stock, subject to a breach of a conversion 

trigger set forth at the inception of the issuance of the bonds (Liberadzki and 

Liberadzki, 2019). Unlike with regular convertibles, a conversion is not an option at 

the discretion of a bondholder but is forced when the bank's regulatory capital fails to 

meet a predetermined level. About banks, the trigger event is Common Equity Tier1 

(CET1) ratio falling below 5.125% in case of so-called low triggers (and 7% or 8% 

in case of high triggers).  

 

Despite their name, CoCos may present a more extreme construction of loss 

absorption imprinted in a write-down mechanism, where the occurrence of a 

predetermined stress-event automatically triggers a write-down of a bond's value 

without diluting shareholders. The burden of an institution's failure is imposed on the 

bondholders, but the bank may continue to operate, averting the financial system's 

disruption. If the conversion trigger is not breached, CoCos remain as ordinary 

subordinated debt securities to retire at the first call date (they are usually structured 

as callable perpetual bonds with a possible call at year five or later). The recent 

developments in the structuring of CoCo bonds aim to reduce the severity of an 

automatic write-down of the bonds' principal value, facilitating the discretionary 

write-up of the bonds once the issuing bank's financial situation is no longer 

distressing. 

 

Thus, CoCo bonds provide buffer capital to a bank at a time of distress but before 

potential insolvency (i.e., loss-absorption capacity on a going-concern basis). Such 

an automatic 'bail-in' executed in times of distress may rescue a bank from failure 

without a (heavily criticized) injection of taxpayer money into large financial 

institutions (bail-out). One may say that this write-down mechanism is somehow 

similar to that embedded in so-called catastrophe bonds (or only 'CAT bonds'), which 

were initially designed by US reinsurers and were used to transfer the risk of losses 

caused by natural disasters. To some extent, this mechanism may be regarded as a 

cornerstone of the write-down embedded in the structure of a CoCo. When it comes 

to CoCos, the trigger event of a natural disaster is replaced by a capital ratio trigger. 

The main difference, though, is that CoCos' trigger is strictly linked to the issuer's 

health rather than to external occurrence. 

 

The contingent convertibles play an essential role in the tier-based capital structure 

imposed by the Basel III Capital Accord package. Their most eminent virtue of 

contingent conversion (or write-down) allows them to be assigned to the category of 

the bank's Additional Tier 1 (AT1) regulatory capital. The internationally accepted 

principles of Basel III are translated into law worldwide. Investors in contingent 

capital prefer consistent and high coupon payments to equity stakes. As a rule, they 

anticipate that the triggers will never be reached and therefore enjoy a relatively high 

coupon that embodies the option to convert the bond into equity or write-down.  
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Apart from the risk of trigger event occurrence, holders of AT1 CoCos are exposed 

to coupon cancellation and call extension risks. Coupons are, like share dividends, 

fully discretionary, so a board could decide to cut them at any time. Interest is payable 

only from distributable items, which are essentially retained earnings. Besides, the 

regulator can restrict or prohibit coupon payments on AT1 bonds if it has concerns, 

among other things, about the bank's capital strength. Regarding maturity, any call 

option may be exercised only at the issuer's sole discretion and not at the discretion 

of the investor. 

 

The depiction mentioned above may freely be addressed to insurers' Tier 1 European 

Union (EU) Solvency II regulatory package compliant CoCo bonds (so-called 

Restricted Tier 1s, RT1s). Like banks, insurers are part of the regulated industry. 

Much like AT1s, RT1 items present a loss absorbency mechanism on a going-concern 

basis, which implies that the debt could be written down or converted into equity 

upon the regulatory capital ratio trigger event - in this instance, breaching of the 

Solvency Capital Requirement (SCR). The RT1s must provide for the suspension of 

repayment or redemption in the event of non-compliance with the SCR. 

 

2. Motivation 

 
2.1 Alternative Measure of a Bank's Insolvency 

 

In this paper, we propose a distinct approach to assess the probability of banks' 

insolvency. As a measure of insolvency, we consider the probability of the 

implementing resolution process, i.e., as it is called in actuarial sciences, the 

probability of ruin. We propose the analytical form of the ruin function based on the 

Lévy process as a function of two variables, the thickness of the AT1 layer (the share 

of CoCos in issuers' liabilities structure) and the cost of issuing AT1s above the cost 

of subordinated debt. These two underestimated factors are crucial as far as the 

institution's solvency is concerned. Namely, contingent convertibles deliver two 

counter effects: When things go wrong, CoCos are automatically converted into 

issuer's common equity or just wiped out: in both cases, debt is reduced. Much higher 

coupons of CoCos relatively to straight bonds though make CoCos issuers less 

resilient. What is also neglected in most studies is that our model captures coupon 

cancellation provisions to improve the banks' solvency. The model outputs the 

probability of default which can be compared depending on different issue 

parameters: the size of an issue, coupon level, and trigger level (either low- or high). 

 

Our approach brings us a step further than the study (Jaworski, Liberadzki and 

Liberadzki, 2017). It was then proposed to measure the issuer's default risk with a 

VaR method given alpha significance level and Expected Shortfall. Issuing CoCos 

makes sense (that is: improves issuer's solvency) only if they are structured so that 

the probability of the triggering is more than the alpha significance level. The theorem 

is valid for any spread (the difference between coupon of CoCo and straight bond) 

less than 100%. We then concluded that whenever the probability of contingent 

conversion was high enough, the issuer's default risk would be reduced irrespective 
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of the cost disadvantage of CoCo bonds in comparison to straight bonds. 

 

Another approach to the subject the reader might find is in Jang et al. (2018) or Del 

Viva and El Hefnawy (2020). In their study, Jang et al. (2018) define regulatory 

default as the likelihood that an issuing bank fails to retain the minimum capital 

requirement and post-conversion risk regarding how banks' CET1 ratio breaches the 

regulatory default threshold the post-conversion situation.  

 

2.2 Theoretical Model for Setting Optimum Share of CoCos in a Bank's 

Liabilities. 

  

Basel III calls for banks to have the following minimums in terms of the magnitude 

of capital, CET1 capital, which is 4.5% of Risk-Weighted Assets (RWAs), and for 

Tier 1 capital, 6% of RWAs and total capital ratio (TCR) of 8% RWAs. Banks can 

allocate 1.5% of their RWAs to AT1 in the computation of Tier 1 capital ratio 

minimum. 

 

Additionally, banks must meet a so-called combined buffer requirement (CBR), 

which is the sum of various capital buffers set on top of the base capital requirements. 

A bank may meet the CBR only with CET1 capital that is not used to meet the 8% 

own funds requirement. In other words, if it uses CET1 capital to meet any of the 

3.5% gaps between the CET1 minimum requirement of 4.5% and the total capital 

requirement of 8%, that capital is not eligible to meet the CBR. Therefore, the most 

efficient capital structure is for banks to issue AT1 capital to cover the 1.5% point 

difference between CET1 and overall Tier 1 requirement and Tier 2 (T2) capital to 

cover the 2% point difference between Tier 1 and total capital requirements. This 

avoids using CET1 capital for those purposes, which would then not be available to 

meet the bank's CBR - a clear incentive to banks to issue both AT1 and T2 bonds. 

 

Going beyond minimum TCR, national supervisors have the discretion to apply 

additional own funds requirements on an individual basis. Pillar 2 requirements (P2R) 

are own additional funds supposed to cover risks neither addressed by the Pillar 1 

capital requirements (i.e., 4.5% RWAs of CET1, 6% of Tier 1,8% TCR) nor 

combined buffer requirements, such as interest rate risk in the banking book.  

 

Then the question arises as to what extent AT1s offer real protection against losses 

on a going-concern basis. AT1 CoCos may fill banks' funds up to 1.5% RWAs, and 

their prevailing coupons range between 3.8% and 8.8% per annum (Liberadzki and 

Liberadzki, 2019). Pure arithmetic shows that coupon cancellation may bring a one-

off relief to the issuer of merely 0.13% RWAs. This means getting paid a premium 

over a straight Tier 2 for little extra gain. The restrictions on coupon distributions 

made more sense in the light of the original Basel Committee on Banking Supervision 

(BCBS) proposals to build the capital buffers of AT1 instruments, increasing their 

admissible share in RWAs even up to 13%. The possible solution would be to allow 

banks fulfilling their P2R in AT1 items as well. Several jurisdictions have already 

confirmed that AT1 will be allowed to meet Pillar 2 requirements. The new EU CRD5 
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directive of 2019 sets a requirement for P2R composition to be identical to the Pillar 

1 structure. That means that P2R may consist of 56.25% CET1, 18.75% AT1, and 

25% T2 eligible instruments or positions. In other words, AT1s recently have been 

given more significant importance in the banks' capital structure. Such a development 

calls for a useful model for regulators and supervisory authorities to prescribe the 

optimal P2R composition for each bank, assessing the specific amount of AT1s to be 

issued within appropriate calibrated issuance parameters: trigger level the interest. In 

Del Viva and El Hefnawy (2020), an alternative approach to CoCo bonds or shares is 

discussed. 

 

Thus, a rigorous theoretical background is needed to explain the optimal share of 

CoCos in an institution's liabilities (or RWAs). BCBS papers do not provide a 

reasonable explanation for why the regulatory eligibility for CoCos is capped at 1.5% 

concerning TCR. Therefore, the main regulatory question we aim to pose is if the 

regulatory framework of AT1 instruments reflects their role in the banks' capital 

structure. We feel that the researchers omit this issue. Instead, much effort is put into 

a quantitative approach to the existing AT1s on the market. At present, the 

academicians concentrate mostly on searching pricing formula for current CoCos and 

look into probability assessment of banks' insolvency. The most renowned of them 

are (i) Pennacchi (2011), analyzing contingent capital in the context of a structural 

credit risk model of an individual bank; and Spiegeleer and Schoutens (2012), 

Spiegeleer et al. (2017) with their credit- and equity derivatives as well as implied 

CET1 models. Positioned somehow in-between, Russo, Lagasio, Brogi, and Fabozzi 

(2020) studied the ability of both balance sheet items (i.e., CET1 ratio) and market 

data (i.e., CDS) to predict bank distress.  

 

There is no much thought on how to reshape the existing instrument into a better one. 

If there is any, the researchers such as Sundaresan and Wang (2015), Vallee (2016), 

Pennacchi and Tchistyi (2016), Di Girolamo, Campolongo, De Spiegeleer, and 

Schoutens (2017), or Xiao (2019) usually concentrate on the propositions concerning 

changing the trigger event mechanism. We intend to go in the other direction and fill 

the research gap with the theoretical condition for optimum share CoCos in an 

institution's liabilities. This could give supervisory authorities guidance on what the 

P2R capital layer should be composed of to enhance stability.   

 

The paper is organized as follows. Section 3 presents the model based on the refracted 

Lévy process, followed by the main results. Section 4 and 5 discuss the ruin 

probability of the refracted Lévy processes and provide an analytical formula for the 

particular case, compound Poisson process with exponential jumps. Conclusions and 

possible future are included in section 6.   

 

3. Model 

 

We consider a simplified model of bank activities. We focus on CET1 ratio, which 

measures bank Common Equity Tier 1 capital (roughly speaking the bank own funds 

and other core capital) against Risk-Weighted Assets:  
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 𝐶𝑜𝑚𝑚𝑜𝑛  𝐸𝑞𝑢𝑖𝑡𝑦  𝑇𝑖𝑒𝑟  1  𝑅𝑎𝑡𝑖𝑜 =
 𝐶𝑜𝑚𝑚𝑜𝑛  𝐸𝑞𝑢𝑖𝑡𝑦  𝑇𝑖𝑒𝑟  1  𝐶𝑎𝑝𝑖𝑡𝑎𝑙 

   𝑅𝑖𝑠𝑘−𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑  𝐴𝑠𝑠𝑒𝑡𝑠   
. (1) 

 

We consider the case when the CoCo write-down / write-up bonds are not included 

in Common Equity Tier 1 capital. However, on instance of their write-down, CET1 

ratio goes up and if it is followed by write-up then CET1 ratio diminishes. Indeed, 

due to the balance sheet rules the cancellation of a part of a debt raises own funds, 

while restoring it works the other way round. We assume that there are three 

thresholds 𝑡ℎ0 , 𝑡ℎ1  and 𝑡ℎ2 , 0 ≤ 𝑡ℎ0 < 𝑡ℎ1 < 𝑡ℎ2 , set by the banking 

supervision: If the CET1 ratio falls below 𝑡ℎ2 then both payments cease: interest on 

CoCo bonds and the share dividends. They are restored when CET1 ratio goes back 

again above 𝑡ℎ2. 

 

When the CET1 ratio falls below 𝑡ℎ1 the write-down of CoCo bonds is implemented 

(partial or to zero). The write-up (in form of full or only partial restoration of bonds’ 

nominal value) takes place when the CET1 ratio restoration is sufficient to bring it 

above 𝑡ℎ1 level. An altrernative scenario is that writing off CoCo bonds does not 

make the CET1 ratio rebound above the 𝑡ℎ0. In such an instance the bank is to be 

wound up in a resolution or bankruptcy procedure.  

 

In order to make the model more feasible we assume that both: write-down and write-

up are implemented in a continuous manner. Furthermore we restrict ourselves to the 

case of callable perpetual CoCo bonds, i.e. there is no fixed maturity, only on some 

fixed days (once a couple of years, no less than five after the date of issuance) an 

issuer has the right to call. 

 

The management of the bank has a choice to issue the less costly straight bonds, 

where the interest is paid up to maturity or bank default, or the more costly loss 

absorbing CoCos. Neither of them is included in CET1 capital. We denote by 𝑉𝐿 the 

joint volume of both types of bonds and by 𝛾 ∈ [0,1] the ratio of a volume of the 

CoCo bonds against both (i.e. 𝑉𝐿). Obviously the bank management would like to 

have 𝛾 as low as possible, while the supervisors would like to have 𝛾 as high as 

possible. One of the goals of the model proposed in our study is to provide a method 

of finding an optimal 𝛾. 

 

Let a stochastic process 𝑈 = (𝑈𝑡)𝑡≥0 , defined on a probability space (Ω, ℳ, ℙ), 

model the surplus above a threshold 𝑡ℎ0, of the CET1 ratio increased by a possible 

write down of CoCo bonds. In more details CET1 ratio is a piece-wise linear function 

of 𝑈𝑡.  

 

𝐶𝐸𝑇1  𝑅𝑎𝑡𝑖𝑜𝑡 = {

𝑈𝑡 + 𝑡ℎ0 − 𝛾𝑏𝐿    𝑖𝑓   𝑈𝑡 ≥ 𝑡ℎ1 − 𝑡ℎ0 + 𝛾𝑏𝐿 ,
𝑡ℎ1    𝑖𝑓   𝑡ℎ1 − 𝑡ℎ0 + 𝛾𝑏𝐿 > 𝑈𝑡 > 𝑡ℎ1 − 𝑡ℎ0,
𝑈𝑡 + 𝑡ℎ0    𝑖𝑓   𝑡ℎ1 − 𝑡ℎ0 > 𝑈𝑡 > 0,
𝑡ℎ0    𝑖𝑓   0 ≥ 𝑈𝑡 .

 (2) 
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where 𝑏𝐿  is the quotient of the volume 𝑉𝐿  and Risk-Weighted Assets. Thus for 

 𝑈𝑡 ≤ 𝑡ℎ1 − 𝑡ℎ0  CoCo bonds are fully write down and for 𝑡ℎ1 − 𝑡ℎ0 < 𝑈𝑡 < 𝑡ℎ1 −
𝑡ℎ0 + 𝛾𝑏𝐿 partially. Note that the write-down, write-up rule allows us to choose a 

Markov process as the underlying 𝑈. 

 

We assume that 𝑈 is a refracted Lévy process (see Kyprianou (2014), Kyprianou 

and Loeffen (2010), Lkabous et al. (2017), Czarna et al. (2019) and Albrecher et al. 

(2018)).  

 

𝑈𝑡 = 𝑥 + 𝑏 + 𝛿1𝑡 + (𝛿2 − 𝛿1) ∫
𝑡

0
1 − 2.5𝑝𝑡 𝑙 𝑈𝑠≥𝑏𝑑𝑠 − 𝑆𝑡, (3) 

 

where 

• 𝑆 = (𝑆𝑡)𝑡≥0 is a driftless, a nondecreasing Lévy process (for example the      

  compound Poisson process), which describes "extra" losses (compare  

  Schoutens and Cariboni (2009)); 

• 𝑏 = 𝑡ℎ2 − 𝑡ℎ0 + 𝛾𝑏𝐿 is a refraction point; 

• 𝑥 is the initial surplus of CET1 ratio over the threshold 𝑡ℎ2; 

• the drifts 𝛿1 and 𝛿2 are given by  

 

𝛿1 = 𝑐1 − (1 − 𝛾)𝑐2 = 𝑐1 − 𝑐2 + 𝛾𝑐2 

and 

           𝛿2 = 𝛿1 − 𝛾𝑐3 − 𝑑 = 𝑐1 − 𝑐2 − 𝑑 − 𝛾(𝑐3 − 𝑐2);          (4) 

 

• 𝑐2  and 𝑐3 , 𝑐2 < 𝑐3 , describe the decrease of CET1 ratio due to the 

payment of interest with respect to the mentioned above standard bonds 

and CoCo’s i.e. the interest rate paid on standard bonds (𝑖𝑆) and CoCo’s 

(𝑖𝐶𝑜) multiplied by ratio 𝑏𝐿 = 𝑉𝐿/𝑅𝑊𝐴; 

 

• 𝑑 describes the fall of CET1 ratio due to the payment of the dividend, i.e. 

the total dividend paid during a year divided by Risk-Weighted Assets; 

• 𝑐1 describes the rise of CET1 ratio due to income from assets reduced 

due to the remaining costs of running the bank, i.e.divided by Risk-

Weighted Assets the difference of the total income and total costs during 

a year; 

• 𝑡  denotes time in years, starting from a fixed moment (for example 

today); 

• we assume that 𝛿1 ≥ 𝛿2 > 𝔼(𝑆1). 

 

On Figure 1 we draw a sample path of the prices 𝑈. Note that the proposed model is 

closely related to models used to determine the optimal dividend, see for example 

Yin and Wen (2013), Albrecher et al. (2018), Loeffen (2009).  
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Figure 1. Sample path of a refracted Lévy process 𝑈𝑡. 

Source: Own creation.  

  

Let a random variable 𝜅, taking values in (0 + ∞], denote the moment of the default  

 

             𝜅(𝜔) = inf{𝑡 > 0: 𝑈𝑡(𝜔) < 0}. (4) 

 

Note that in our model the default of 𝑈 is corresponding to the implementation of 

the resolution or bankruptcy process. The so called ruin probability i.e. the probability 

of default at any time, is given by  

 

                         𝑃 = ℙ(𝜅 < ∞).  (5) 

 

Note that the probability of default depends on real parameters 𝑥, 𝑏, 𝛿1 and 𝛿2 and 

the jump process 𝑆 = (𝑆𝑡)𝑡≥0, 𝑥, 𝑏 ≥ 0, 𝛿1 ≥ 𝛿2 ≥ 𝔼(𝑆1). We fix 𝑆 and consider 

𝑃 as a real valued function of 𝑥, 𝑏, 𝛿1 and 𝛿2  

 

                  𝑃 = 𝑃(𝑥, 𝑏, 𝛿1, 𝛿2).                         (6) 

 

Since in our model 𝑏, 𝛿1  and 𝛿2  are linear functions of 𝛾 , 𝛾 ∈ [0,1] , the 

dependence of the ruin on 𝛾 is given by  

 

𝑃♢(𝛾) = 𝑃(𝑥, 𝑏0 + 𝑏𝐿𝛾, 𝑐1 − 𝑐2 + 𝑐2𝛾, 𝑐1 − 𝑐2 − 𝑑 − (𝑐3 −
                                   𝑐2)𝛾, 𝑆),      𝑏0 = 𝑡ℎ2 − 𝑡ℎ0.                           (7) 

 

In the points of differentiability, the derivative of 𝑃♢(𝛾) with respect to 𝛾 equals  

 

            
𝑑𝑃♢

𝑑𝛾
=

𝜕𝑃

𝜕𝑏
𝑏𝐿 +

𝜕𝑃

𝜕𝛿1
𝑐2 −

𝜕𝑃

𝜕𝛿2
(𝑐3 − 𝑐2). (8) 

  

It can be easily expressed in terms of the interest rates.  

 

           
𝑑𝑃♢

𝑑𝛾
= 𝑏𝐿(

𝜕𝑃

𝜕𝑏
+

𝜕𝑃

𝜕𝛿1
𝑖𝑆 −

𝜕𝑃

𝜕𝛿2
(𝑖𝐶𝑜 − 𝑖𝑆)). (9) 
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Figure 2. The probability of the ruin as a function of 𝛾 

 
Source: Own creation. 

 

Since 𝑃 is decreasing with the increase of 𝑏, 𝛿1 or 𝛿2 the partial derivatives from 

the above formula are negative or at least non-positive. Thus if 
𝜕𝑃

𝜕𝛿2
 is nonzero then 

for sufficiently small rates 𝑖𝐶𝑜 the small additional issuance of CoCos is improving 

the probability of the ruin (default) i.e. the solvency, but for too big rates 𝑖𝐶𝑜 the 

small issuance may increase the probability of the ruin. Indeed we get a criterion:  

 

Criterion 1. Let 𝑃  be differentiable with respect to 𝛾 . We denote by 𝑐∗  the 

threshold  

         𝑐∗ = 𝑐∗(𝑥, 𝑏, 𝛿1, 𝛿2) =

𝜕𝑃

𝜕𝑏
+

𝜕𝑃

𝜕𝛿1
𝑖𝑆

𝜕𝑃

𝜕𝛿2

  (10) 

 

If the margin between interest rates of CoCo bonds and standard bonds (𝑖𝐶𝑜 − 𝑖𝑆) is 

smaller than 𝑐∗  then the small rise of 𝛾  would imply a decrease of the ruin 

probability 𝑃. On the other side, if the margin between interest rates of CoCo bonds 

and standard bonds is greater than 𝑐∗ then the small increase of 𝛾 would imply an 

increase of 𝑃. 

 

The above can be applied when a bank is planning its first issuance of CoCos. The 

threshold 𝑐∗ is determining the upper bound on the margin between interest rates of 

CoCo bonds and alternative bonds, below which the issuance may improve the bank 

solvency. Similarly when the call day comes the above Criterion may help an issuer 

do decide whether to call or not to call. 

 

In section 4 we provide the formulas for the ruin probability in terms of the Laplace 

exponent of the process 𝑆 = (𝑆𝑡)𝑡≥0 

 

𝜓(𝑧) = ln(𝔼(exp(−𝑧𝑆1))). 
 

Next in section 5 we deal with a special case when 𝑆 is a compound Poisson process 

process with exponentially distributed jumps with intensities respectively 𝜆𝑁 and 

𝜆𝑒. For such two parameter family of jump processes 𝑆(𝜆𝑁 , 𝜆𝑒) we get an analytical 
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formula. For 𝑥 ≥ 𝑏 ≥ 0 and 𝛿1 ≥ 𝛿2 ≥
𝜆𝑁

𝜆𝑒
  

 

    𝑃(𝑥, 𝑏, 𝛿1, 𝛿2) = 𝑃0(𝑏, 𝛿1, 𝛿2)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥). (11) 

 

𝑃0 is the ruin probability for process starting from the threshold 𝑏, i.e. 𝑥 = 0. 

 

𝑃0 = 𝑃0(𝑏, 𝛿1, 𝛿2) =
𝜆𝑁/𝛿2

𝜆𝑒
  

(𝜆𝑒−𝜆𝑁/𝛿1)

(𝜆𝑒−𝜆𝑁/𝛿2)exp((𝜆𝑒−𝜆𝑁/𝛿1)𝑏)+𝜆𝑁/𝛿2−𝜆𝑁/𝛿1
. (12) 

 

On Figure 2 we show how the probability of ruin may depends on 𝛾.The formula 

describing 𝑐∗ is: 

      𝑐∗ = 𝑐∗(𝑥, 𝑏, 𝛿1, 𝛿2) =

𝜕𝑃0
𝜕𝑏

+
𝜕𝑃0
𝜕𝛿1

𝑐2
𝑏𝐿

𝜕𝑃0
𝜕𝛿2

−𝑥
𝜆𝑁𝑃0

𝛿2
2

.  (13) 

 

Since the partial derivatives 
𝜕𝑃0

𝜕𝑏
, 

𝜕𝑃0

𝜕𝛿1
 and 

𝜕𝑃0

𝜕𝛿2
 are negative, in the model based on 

Poisson compound process with exponential jumps, the threshold 𝑐∗ is decreasing 

with respect to surplus 𝑥, see Figure 3. 

 

Figure 3: The threshold 𝑐∗as a function of 𝑥. Scale: multiples of 𝑏. 

 
Source: Own research. 

 

4. Ruin Probability for Refracted Lévy Processes 

 

By 𝑋𝛿 = (𝑋𝛿,𝑡)𝑡≥0  , we denote the auxiliary one parameter family of Lévy 

processes, 𝛿 > 𝔼(𝑆1),  

 𝑋𝛿,𝑡 = 𝛿𝑡 − 𝑆𝑡 , (14) 

Note that below the threshold 𝑏 𝑈 is driven by 𝑋𝛿1
, but above by 𝑋𝛿2

. The basic 

characteristics are:  

 𝔼(𝑋𝛿,1) = 𝛿 − 𝔼(𝑆1), (15) 

 𝔼(exp(𝑧𝑋𝛿,1)) = 𝑒𝛿𝑧𝔼(𝑒𝑥𝑝(−𝑧𝑆1)),      𝑅𝑒(𝑧) ≥ 0. (16) 
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In Kyprianou (2014), Kyprianou and Loeffen (2010), Czarna et al. (2019) the 

analytical formula for the ruin probability is provided in terms of so-called scale 

functions 𝑊𝑖  (see also Biffis and Kyprianou (2010)). For 𝔼(𝑆1) < 𝛿2 ≤ 𝛿1  and 

𝑥 ≥ 𝑏 we have 

 

 𝑃(𝑥, 𝑏, 𝛿1, 𝛿2, 𝑆) = ℙ(𝜅 < ∞) (17) 

 = 1 −
𝛿2−𝔼(𝑆1)

1−(𝛿1−𝛿2)𝑊1(𝑏)
(𝑊1(𝑥 + 𝑏) + (𝛿1 − 𝛿2) ∫

𝑥

0
𝑊2(𝑥 −

                                    𝑦)𝑊1
′(𝑦 + 𝑏)𝑑𝑦). 

 

The scale functions are characterized in terms of the ruin and in terms of the Laplace 

transform 

              𝑊𝑖(𝑥) = 𝑊(𝑥, 𝛿𝑖)                            (18) 

  

𝑊(𝑥, 𝛿) =
ℙ(𝑥+inf(𝑋𝛿,𝑡:𝑡≥0)≥0)

𝛿−𝔼(𝑆1)
=

ℙ(−inf(𝑋𝛿,𝑡:𝑡≥0)≤𝑥)

𝛿−𝔼(𝑆1)
 (19) 

 

For 𝑧 ∈ ℂ with positive real part 

  

∫
+∞

0
𝑒−𝑧𝑥𝑊(𝑥, 𝛿)𝑑𝑥 =

1

𝛿𝑧+𝜓(𝑧)
,    𝜓(𝑧) = ln(𝔼(exp(−𝑧𝑆1))). (20) 

 

Note that 𝑊𝑖(𝑥)  are nondecreasing, for 𝑥 < 0  𝑊𝑖(𝑥) = 0 , and moreover 

ln(𝑊𝑖(𝑥)) are concave on the real half-line [0, +∞) (compare Kyprianou (2014) 

Lemma 8.2). 

 

5.  Example: Compound Poisson Process with Exponential Jumps 

 

In this section we consider a special case when 𝑆 is a compound Poisson process 

with exponential jumps with intensities respectively 𝜆𝑁 and 𝜆𝑒.  

                 𝑆𝑡 = ∑𝑁𝑡
𝑘=1 𝜉𝑘 ,                             (21) 

 

where, 𝑁 = (𝑁𝑡)𝑡≥0) is a counting Poisson process with rate 𝜆𝑁 , and 𝜉𝑘  𝑘 =
1,2, … are independent and identically distributed random variables, with distribution 

function 𝐺(𝑡) = (1 − exp(−𝜆𝑒𝑡))+, 𝜆𝑒 > 0 , which are also independent of 𝑁𝑡 , 

𝑡 ≥ 0. 

 

We recall that:  

𝔼(𝜉1) =
1

𝜆𝑒
         𝑎𝑛𝑑  𝑓𝑜𝑟       𝑧 ∈ ℂ, 𝑅𝑒 𝑧 > −𝜆𝑒 ,      𝔼(exp(−𝑧𝜉1)) =

𝜆𝑒

𝑧+𝜆𝑒
. (22) 

 

Hence: 

 

𝔼(𝑆𝑡) = 𝔼(𝔼(∑𝑁𝑡
𝑘=1 𝜉𝑘|𝑁𝑡)) = 𝔼(𝑁𝑡𝔼(𝜉1)) = 𝔼(𝑁𝑡)𝔼(𝜉1) = 𝑡

𝜆𝑁

𝜆𝑒
. (23) 
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It is observed that: 𝔼(𝑆𝑡) = 𝑡𝔼(𝑆1). Similarly for complex 𝑧, such that 𝑅𝑒  𝑧 >
−𝜆𝑒, we get: 

 

𝔼(exp(−𝑧𝑆𝑡)) = 𝔼(𝔼(∏𝑁𝑡
𝑘=1 exp(−𝑧𝜉𝑘)|𝑁𝑡)) = 𝔼((𝔼(exp(−𝑧𝜉1)))𝑁𝑡) (24) 

 = ∑∞
𝑛=0 (

𝜆𝑒

𝜆𝑒+𝑧
)

𝑛 𝑡𝑛𝜆𝑁
𝑛

𝑛!
𝑒−𝑡𝜆𝑁 = exp (

−𝑡𝜆𝑁𝑧

𝜆𝑒+𝑧
) 

 

and it is observe that 𝔼(exp(−𝑧𝑆𝑡)) = (𝔼(exp(−𝑧𝑆1)))𝑡. 

 

Hence, the Laplace exponent for 𝑆 equals  

𝜓(𝑧) = ln(𝔼(exp(−𝑧𝑆1))) =
−𝜆𝑁𝑧

𝜆𝑒+𝑧
  (25) 

 

and  
1

𝛿𝑖𝑧+𝜓(𝑧)
=

1

𝛿𝑖𝑧−
𝜆𝑁𝑧

𝜆𝑒+𝑧

=
𝜆𝑒+𝑧

𝑧(𝛿𝑖𝜆𝑒−𝜆𝑁+𝑧𝛿𝑖)
=

𝐴𝑖

𝑧
+

𝐵𝑖

𝑧+𝜆𝑒−𝜆𝑁/𝛿𝑖
, (26) 

 

Where: 

 

 𝐴𝑖 =
1

𝛿𝑖

𝜆𝑒

𝜆𝑒−𝜆𝑁/𝛿𝑖
=

1

𝛿𝑖−𝔼(𝑆1)
, (27) 

 𝐵𝑖 = −
1

𝛿𝑖

𝜆𝑁/𝛿𝑖

𝜆𝑒−𝜆𝑁/𝛿𝑖
= −

𝔼(𝑆1)

𝛿𝑖(𝛿𝑖−𝔼(𝑆1))
. (28) 

 

Since for any 𝜆 ∈ ℝ and 𝑅𝑒(𝑧) > −𝜆  

 

 ∫
∞

0
𝑒−𝑧𝑥𝑒−𝜆𝑥𝑑𝑥 = −

1

𝑧+𝜆
𝑒−(𝑧+𝜆)𝑥|0

∞ =
1

𝑧+𝜆
,  (29) 

 

The following formulas  are obtained for scale functions (compare Kyprianou 

(2014) exercise 8.3). For 𝑥 ≥ 0 

 

 𝑊𝑖(𝑥) = 𝐴𝑖 + 𝐵𝑖exp(−(𝜆𝑒 − 𝜆𝑁/𝛿𝑖)𝑥) (30) 

 =
1

𝛿𝑖
(1 +

𝜆𝑁

𝛿𝑖𝜆𝑒−𝜆𝑁
(1 − exp (−𝑥 (𝜆𝑒 −

𝜆𝑁

𝛿𝑖
)))). 

  

Basing on the above we get for 𝑥 ≥ 0  

  

∫
𝑥

0
𝑊2(𝑥 − 𝑦)𝑊1

′(𝑦 + 𝑏)𝑑𝑦 = ∫
𝑥

0
𝐴2𝑊1

′(𝑦 + 𝑏)𝑑𝑦 (31) 

+ ∫
𝑥

0

𝐵2exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)(𝑥 − 𝑦))
𝜆𝑁

𝛿1
2 exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)(𝑦 + 𝑏))𝑑𝑦 

= 𝐴2𝑊1(𝑦 + 𝑏))|0
𝑥 

−
𝐵2𝛿2

𝛿1(𝛿1 − 𝛿2)
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)(𝑥 + 𝑏))exp(𝜆𝑁(1/𝛿1 − 1/𝛿2)(𝑦 + 𝑏))|0

𝑥 

 = 𝐴2𝑊1(𝑥 + 𝑏) − 𝐴2𝑊1(𝑏) 
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−
𝐵2𝛿2

𝛿1(𝛿1 − 𝛿2)
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)(𝑥 + 𝑏)) 

 +
𝐵2𝛿2

𝛿1(𝛿1−𝛿2)
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏) 

 = 𝐴2𝑊1(𝑥 + 𝑏) − 𝐴2𝑊1(𝑏) −
𝐵2𝛿2

𝛿1(𝛿1−𝛿2)

1

𝐵1
(𝑊1(𝑥 + 𝑏) − 𝐴1) 

 +
𝐵2𝛿2

𝛿1(𝛿1−𝛿2)
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏) 

 = −
1

𝛿1−𝛿2
𝑊1(𝑥 + 𝑏) − 𝐴2𝑊1(𝑏) −

𝐵2𝛿2𝜆𝑒

(𝛿1−𝛿2)𝜆𝑁
 

 +
𝐵2𝛿2

𝛿1(𝛿1−𝛿2)
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏) 

 

Since 𝛿2 − 𝔼(𝑆1) = 1/𝐴2 it is finally obtain that the probability of ruin equals: 

 

𝑃 = 1 −
1

1 − (𝛿1 − 𝛿2)𝑊1(𝑏)

1

𝐴2
(𝑊1(𝑥 + 𝑏) − 𝑊1(𝑥 + 𝑏) − (𝛿1 − 𝛿2)𝐴2𝑊1(𝑏)

−
𝐵2𝛿2𝜆𝑒

𝜆𝑁
 

 +
𝐵2𝛿2

𝛿1
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏)) (32) 

= 1 −
1

1 − (𝛿1 − 𝛿2)𝑊1(𝑏)
(−(𝛿1 − 𝛿2)𝑊1(𝑏) + 1 

 −
𝜆𝑁

𝜆𝑒𝛿1
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏)) 

=
1

1 − (𝛿1 − 𝛿2)𝑊1(𝑏)
  

𝜆𝑁

𝜆𝑒𝛿1
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏) 

=
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏)

1 − (𝛿1 − 𝛿2)(𝐴1 + 𝐵1exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏))
  

𝜆𝑁

𝜆𝑒𝛿1
exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥) 

=
(𝜆𝑒 − 𝜆𝑁/𝛿1)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏)

𝛿1(𝜆𝑒 − 𝜆𝑁/𝛿1) − (𝛿1 − 𝛿2)(𝜆𝑒 − 𝜆𝑁/𝛿1exp(−(𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏))
  

𝜆𝑁

𝜆𝑒
exp(−(𝜆𝑒

− 𝜆𝑁/𝛿2)𝑥) 

=
𝜆𝑁/𝛿2

𝜆𝑒
  

𝜆𝑒 − 𝜆𝑁/𝛿1

(𝜆𝑒 − 𝜆𝑁/𝛿2)exp((𝜆𝑒 − 𝜆𝑁/𝛿1)𝑏) + 𝜆𝑁/𝛿2 − 𝜆𝑁/𝛿1
exp(−(𝜆𝑒

− 𝜆𝑁/𝛿2)𝑥). 
 

Putting 𝑃0(𝑏, 𝛿1, 𝛿2) = 𝑃(0, 𝑏, 𝛿1, 𝛿2) it is obtained: 

 

𝑃 = 𝑃0(𝑏, 𝛿1, 𝛿2)exp(−(𝜆𝑒 − 𝜆𝑁/𝛿2)𝑥).            (33) 

 

6. Conclusions and Further Research 

  

This paper aims to model the impact of the issuance of the CoCo bonds on banks' 

solvency. We provide a new measure of bank insolvency. In the typical approach of 

financial mathematics, the time horizon is assumed to be finite. That usually implies 

the question about the probability of a bank remaining solvable in one year (or n 

years). Contrary to that, as a measure of insolvency, we choose the probability of 
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default at any moment in the future, a notion that is closely related to the so-called 

"ruin probability" widely applied in actuarial sciences. This means that our approach 

time horizon is boundless (infinite), for we base on the observation that CoCos are 

perpetual or very long-dated bonds.   

 

In the proposed model, the leading characteristic of the bank's welfare is the CET1 

ratio approximated by a refracted Lévy stochastic process. This leads to constructing 

the threshold c^* on the margin between the interest rates of CoCo bonds and straight 

bonds. If the margin is below the threshold, the further issuance of CoCo bonds 

decreases the ruin probability; if the margin is above the threshold, the further 

issuance makes this probability go up. This allows us to determine the CoCo bonds 

issuance's optimal level concerning the spread between the interest rates of CoCo 

bonds and straight bonds and the actual value of the CET1 ratio.  

 

The issuance's optimal level is determined as an equilibrium between loss absorption 

due to possible write-down of CoCo bonds and significantly higher coupon (yield) 

CoCo bonds must pay compared to that of the other debt instruments with no write-

down mechanism embedded. Furthermore, we show that the increase of the initial 

CET1 ratio reduces equilibrium c^*. When a bank is in poor condition (low CET1 

ratio), then the issuance of CoCo bonds improves its solvency even for a relatively 

wide margin between interest rates, while when a bank is in good condition (high 

CET1 ratio), then the issuance of CoCo bonds improves solvency only for a relatively 

small margin. 

 

There are two possible (straightforward) extensions of the results presented in our 

paper: 

- The first one is to adopt the results concerning "Parisian ruin" (see, for 

example, Lkabous et al. (2017), Loeffen et al. (2018)). Indeed, there is some 

lapse of time between the first report that a bank is in distress and the 

supervisor's decision to intervene. Supervisory authorities are usually 

reluctant to step in before making sure that an individual bank's decline 

cannot be reverted by its management or shareholders on their own anymore. 

It would be useful to check the length of the lapse on the optimal level of 

CoCo bonds issuance. 

 

- Another extension would be to compare the issuer side with the buyer 

(investor) side. The threshold c^* might be then considered as a selling price. 

It would be interesting to compare it with the buyer price obtained from the 

market-based pricing models for defaultable assets (see, for example, 

Spiegeleer and Schoutens (2012), Spiegeleer et al. (2017), Giang and Liang 

(2012), Jarrow and Turnbull (1995) Duffie and Singleton (1999), Longstaff 

and Schwartz (1995), Bielecki and Rutkowski (2004) and Bielecki et al. 

(2009)). 

 

The latest EU regulation already allows for some of Pillar 2 Requirements on capital 

to be filled with AT1 instruments. We believe that our academic outcomes may give 
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the supervisory authorities a reasonable tool to fill the P2R bank capital layer with 

AT1s so that their loss-absorbing capacity serves to maximize the purpose of 

extension banks' survivability. Besides, this would provide the EU legislators with 

some recommendations to re-design the existing CoCos legal framework – within the 

Basel III guidance - or even propose more radical changes to the Basel Agreement 

itself. 

 

The model also proves useful in setting the optimum size of RT1 CoCos in the 

insurer's liabilities. AT1 and RT1 CoCos are very similar. Both present identical 

features: perpetuity, a 'synthetic maturity' of five years at least, and non-cumulative 

coupon deferral. Much like AT1s, RT1 debt presents a loss-absorbency mechanism 

on a going-concern basis, which implies that the debt could be written down upon the 

trigger event's regulatory capital ratio.   
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