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Abstract: 

 
Purpose: This paper aims to develop a corporate failure prediction model for construction 

companies in Poland that allow assessing their financial situation and credit risk.  

Design/Methodology/Approach: For this purpose, the following research methods have been 

used, descriptive and comparative analysis, subject literature review, and logit analysis. The 

Polish construction companies' financial data in this research come from the Emerging Mar-

kets Information Service (EMIS). To achieve the main goal of the research, the logit model 

was built. The significance test, error matrix, and ROC curve were used to assess the quality 

of the estimated binary logit model. 

Findings: Based on the research, we identify seven financial indicators that significantly im-

pact the probability of poor financial condition. The following variables are current assets 

turnover, debt to assets ratio, operating profit to assets, gross profit to assets, operating profit 

plus amortization to short-term liabilities, current assets to assets ratio, and equity to assets 

ratio. The research results show that corporate failure prediction models are interesting and 

important tools to assess the financial situation. Based on the developed model, it has been 

found that the growth of debts increases the credit risk of construction companies. Moreover, 

the increase in the share of current assets in the total assets harms the financial condition. 

Also, the risk of insolvency decreases with growing profitability measured by the rate of return 

on assets. 

Practical Implications: The built logit model can be beneficial for investment loan providers, 

insurance companies, and entities selecting contractors in construction projects due to the 

possibility of the credit risk assessment. 

Originality/Value: The use of logit models to identify statistically significant corporate failure 

prediction factors for construction companies in Poland. 
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1. Introduction  

 

Construction is one of the fundamental industry sectors in the Polish economy. In 

2017, the gross value added (at basic prices) of the construction sector was 7.3% of 

the Polish GDP (Eurostat, 2018), while the employment in this industry reached 5.8% 

of the total employment in Poland (Statistics Poland, 2018, p. 23). Considering the 

close connection of the construction and other sectors, some studies show that the 

impact is even stronger. For instance, according to the data from Deloitte and the 

Polish Association of Employers – Construction Materials Manufacturers (2016), in 

2014, the construction sector (means as building materials and services) created 

around 20.3% of the Polish GDP (directly, indirectly, and in terms of profit) and 

18.7% of employment. 

 

For the Polish construction companies, understood as building contractors, 2017 was 

a record year in which the construction and assembly production value increased by 

10.9% in terms of fixed prices compared with the previous year, reaching almost PLN 

186.8 billion. The highest share in this value belonged to companies performing 

mostly specialized construction activities (40.8%), followed by enterprises engaged 

in construction buildings (35.1%) and civil engineering works (24.1%). In 2017, the 

highest construction and assembly production dynamics was reported by construction 

buildings companies and civil engineering enterprises (year-on-year increase by 

20.7% and 18.6%, respectively). The value of specialized construction companies' 

production was rather stable throughout the analyzed period (Statistics Poland, 

2018b). The good economic situation on the Polish construction market was mostly 

connected with continuing infrastructural investments, mostly road and railway 

building, co-financed by the EU, and with the high demand on the residential real 

estate market, mostly induced by low mortgage interest rates and rising salaries 

(Deloitte, 2018). The high rate of increase in building production continued in 2018. 

According to Statistics Poland (2019a) estimates, in 2018, gross value added in the 

construction industry rose by 17.0% compared with the previous year.  

 

Paradoxically, strong recovery on the Polish construction market has brought several 

problems that companies have to face in this sector. First, due to the significant 

accumulation of performed construction projects and low supply on the labor market, 

construction companies face a huge workforce shortage. According to the estimates, 

the Polish construction sector requires around 150 thousand employees (manual 

workers and highly qualified personnel). Over the recent years, construction 

enterprises have made efforts to fill the staff deficit by employing Eastern European 

workers, mainly Ukraine and Belarus. However, by considering the liberal 

immigration policy in Germany, it seems that this staff's availability could reduce 

significantly. This problem may involve significant limitation of the executive 

potential in the analyzed companies, causing a delay in realizing construction projects 

(BIG InfoMonitor and PZPB, 2019; Deloitte, 2018). Furthermore, a low labor supply 

induced a dynamic growth of salaries in the construction sector. According to the data 

published by Statistics Poland (2019b, p. 45), in 2018, monthly gross wages and 

salaries in the analyzed sector rose by 8.1% compared to the previous year. 



 Andrzej Geise, Magdalena Kuczmarska, Jarosław Pawłowski    

 

 

101 

Additionally, high project supply in the period from 2017 to 2018 also affected the 

rapid increase in the prices of construction resources and materials. According to 

InfoMonitor Economic Information Bureau and the Polish Construction Employers 

Association (2019), changes in building materials and resources' prices reached 30 to 

70% in the analyzed period. Such rapid price increase is hazardous for large and long-

term infrastructure projects, as the real cost of their execution significantly exceeds 

the investment expenditures assumed in the budget. Because previously applied 

indexation clauses do not reflect the current scale of price increase on the construction 

market, Statistics Poland has decided to adjust indexation to the present situation. At 

the same time, new price indexation rules have been introduced for all road, and 

railway construction contracts concluded from February 2019 onwards (BIG 

InfoMonitor and PZPB, 2018; 2019). 

 

Another source of financial difficulties for Polish construction companies is current 

changes in tax policy. They particularly concern value-added tax on goods and 

services (VAT), which is the basic fiscal tool that influences buyers' behavior 

(Kučerová, 2017). An essential solution in this field is the reverse VAT charge 

mechanism, which was applied from January 2017 to October 2019 for construction 

services. It consisted of shifting the VAT settlement responsibility from the contractor 

to the buyer. Thus, subcontractors issued invoices for services performed exclusive 

of VAT. It resulted in an escalation of payment delays, an increase in debt, and 

financial costs. It also harmed construction companies' financial liquidity (BIG 

InfoMonitor and PZPB, 2018; Kaczmarczyk, 2017; Krupa-Dąbrowska, 2018).  

 

The other tax legislation change that affects the construction industry is the 

introduction of split payment from November 2019. Using that mechanism, payments 

for sold goods and services are split into two parts. One is the net value received on 

the seller's bank account, while the other is VAT tax registered on a dedicated VAT 

settlement account. Considering this solution's character, several issues have been 

identified in the fields of currency invoicing, collective payment, trust accounts, 

factoring, etc., (Piskor, 2018).  

  

Another problem faced by construction companies in Poland is significant payment 

arrears (Dankiewicz, 2018). In 2018, their value increased up to approx. PLN 4.8 

billion. Payment delays exceeding 30 days concerned almost 41 thousand entities 

(BIG InfoMonitor and PZPB 2018). It has been confirmed by the research on 

payments conducted by Coface. It showed that particularly long payment delays are 

typical for the construction industry, reaching approx—105 days as of the end of 2018 

(Coface, 2019). By considering the debt of construction companies, can be concluded 

that foreign capital is a dominant finance source in their activity. The analysis 

confirmed the analysis focused on the industry's largest entities, which showed that 

the average proportion of debt and income was approx. 72% as of the end of 2017 

(Deloitte, 2018). 

  

The identified problems concerning the activity of construction companies harm their 

financial situation. A decrease in business profitability and an increase in debt are 
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observed, which impairs financial liquidity (Otto and Śmietana, 2018; Pałys, 2018). 

Ensuring financial liquidity, which is differently interpreted in the literature (Allen 

and Bolton, 2004), but universally defined as the capability to extinguish financial 

liabilities promptly (Kropsz, 2010), is a vital issue in the possibility of continuing 

business in the market conditions. Its importance is mainly determined by the fact 

that the loss of such capability is deemed a basic symptom of a deteriorating financial 

situation, leading to bankruptcy (Boratyńska, 2009; Tomczak, 2014). In that 

connection, the problem of financial liquidity is an important aspect of the analysis 

concerning construction companies' financial situation (Daryanto, Samidi and 

Siregar, 2018; Bolek and Wiliński, 2012). 

 

2. Review of Corporate Failure Prediction Models 

 

The capability to predict financial difficulties in companies, and consequently, the 

possibility of bankruptcy, is an important issue for a broad group of entities in the 

current economic reality. The significance of this problem has been proven in several 

studies conducted in recent years, focused on developing tools to allow effective 

prediction of financial problems (Gissel, Giacomino, and Akers, 2007). The subject's 

literature usually defines two basic failure business prediction models: bankruptcy 

prediction models and financial distress prediction models.  

 

However, it is difficult to provide a conclusive definition of corporate failure in 

practice and make a clear division between bankruptcy and financial distress (Balcaen 

and Ooghe, 2006; Alaka et al., 2018). In this regard, this part of the paper shall 

describe the general financial approach to predicting financial problems (Cultrera and 

Brédart, 2016). The first attempts in this field were made in the 1930s and 1940s, 

among others, by Fitzpatrick (1932), Mervin (1942), Chudson (1945). It consisted of 

determining the method of selection of financial indicators and analyzing them. The 

period of intensive development in this area started with the studies conducted in the 

1960s. Extending the indicative analysis with a dichotomous classification test 

(Beaver, 1966) and the use of multiple discriminant analysis (Altman, 1968) is worth 

mentioning at this point. Dynamic development of those models followed it, e.g., 

Deakin (1972), Blum (1974), Moyer (1977), Fulmer, Moon, Gavin, and Ervin (1984), 

Gombola et al. (1987), Pantalone and Platt (1987), Koh and Killough (1990), 

Patterson (2001).  

 

Besides that, other tools were developed. In 1980, Ohlson (1980) presented a pioneer 

application of logit models in failure business prediction. Ohlson's solution has been 

used by several researchers, among others, Gentry, Newbold and Whitford (1985), 

Zavgren (1985), Aziz, Emanuel, and Lawson (1988), Platt and Platt (1990), as well 

as Willekens and Gaeremynck (2003). In 1984, Zmijewski (1984) initiated the use of 

probit analysis in the analyzed field. It was further developed by Dopuch, Holthausen, 

and Leftwich (1987), Skogsvik (1990), Lennox (1999), and others. 

 

Nevertheless, many new tools applicable in failure business prediction have appeared 

and evolved in recent years (Mai et al., 2019). These include the analysis of neural 
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network (Messier and Hansen, 1988), especially artificial neural network (Li and 

Wang, 2018; Zhang et al., 1999), data envelopment analysis (DEA) (Cielen, Peeters 

and Vanhoof, 2004), genetic algorithm (Varetto, 1998), support vector machines 

(SVM) (Min, Lee, and Han, 2006), classification and regression trees (CART) (Li, 

Sun, and Wu, 2010; Siemiński, Wędrowska, and Krukowski, 2020). On top of that, 

the popularity of hybrid models, created by using two other models that could be 

parametric and/or non-parametric (Lee, Han, and Kwon, 1996) and a particular 

interest in Bayesian, Hazard, and Mixed Logit models (Trabelsi et al., 2015), is worth 

noting. 

 

Detailed considerations on developing the tools listed above, allowing to predict 

financial problems, are included in (Gissel, Giacomino, and Akers, 2007; Bellovary, 

Giacominot, and Akers, 2007; Balcaen and Ooghe, 2006). 

 

The problem of bankruptcy threat assessment among Polish enterprises was not 

initiated until the 1990s. The Polish economic environment's specifics forced the 

necessity to develop properly adjusted models that would provide a better prognostic 

value (Balina and Bąk, 2016). For this reason, over the last few years, several tools 

have appeared, mainly based on discriminant analysis, e.g., Pogodzińska and Sojak 

(1995), Hadasik (1998), Hołda (2001), Hamrol, Czajka, and Piechocki (2004), and 

logit analysis, e.g., Stępień and Strąk (2004), Wędzki (2005a), Jagiełło (2013). 

Nonetheless, other techniques have also been developed recently, e.g., Ptak-

Chmielewska (2014), Pisula, Mentel, and Brożyna (2015), Pawełek and Grochowina 

(2017), Wójcicka (2017). 

 

The newly introduced models form a quite diverse category, not only in terms of 

statistical methods used but also in other characteristics. One of these features is the 

single or multi-industry character of the research sample. What must be noted, the 

higher is the uniformity of the analyzed population, the better is the prognostic 

capability of the model. Other factors significant in this area are the given 

community's territorial background and the stability of model parameters in time. The 

limited territory of the analysis and passing time generally reduces prognostic 

capability (Wędzki, 2005b). Therefore, sectoral models are suggested, emphasizing 

the need for constant updating (Prusak, 2015; Iwanowicz, 2018). 

 

Certain publications in the subject literature refer to the use of failure business 

prediction models for the construction engineering sector (Koksal, Arditi and Asce, 

2004; Horta and Camanho, 2013; Karas and Srbovẚ, 2019). In Poland, the research 

on forecasting financial difficulties of local construction companies has been initiated 

by Wędzki (2005b), Wawrzyniak and Batóg (2013), Król and Stefański (2014), 

Rusiecki and Białek-Jaworska (2015). Considering the significance of this sector in 

the Polish economy and the recovery on the construction market observed in recent 

years, and the accompanying problems, it seems reasonable to continue the research 

in this field. 
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3. Research Methodology 

 

The analysis has been performed using financial data concerning the entities from the 

construction sector in Poland, taken from the EMIS database. The research sample 

included 3641 companies. The sample's final size was determined after the 

preliminary analysis, which consisted of cleaning the data from outliers and empty 

values.  The financial data was describing the business activity of construction 

companies in 2017. A complete set of financial indicators is presented in Table 1. 

 

Table 1. Variables Used in the Logit Model 
Designation Description Designation Description 

X1 

X2 

X3 

 

X4 

 

X5 

X6 

X7 

X8 

X9 

Return on Assets 

Return on Equity 

Operating profit margin 

Current assets turnover 

Assets turnover 

Current liquidity ratio 

Cash ratio 

Debt to equity ratio 

Debt to assets ratio 

X10 

X11 

X12 

X13 

 

X14 

 

 

X15 

X16 

X17 

Operating profit / Assets 

Gross profit / Assets 

Quick liquidity ratio 

(Net profit +  

amortization) / Liabilities 

(Operating profit +  

amortization) / Short-term 

liabilities 

Current assets / Assets 

Net cash / Assets 

Equity / Assets 

Source: Own creation. 

 

The relationships between the binary, dependent variable (Y) and the set of 

explanatory variables (X) can be analyzed based on classification models defined in 

the literature. Basic models used for classification problems are the linear probability 

model (like Goldberger’s model - see Wiśniewski, 2013, 2016), logit model, Probit 

model, and other models appropriate for machine learning methods. 

 

The binary variable is indicated on the nominal scale, where the values 0 or 1 are 

attributed to a certain problem. In this study, the binary variable has been defined as 

the occurrence of a threat of bad financial condition (Y=1) and good financial 

condition (Y=0) – which is the opposite situation. The threat of corporate failure in 

construction companies has been determined based on the value of three financial 

indicators, i.e., EBITDA (earnings before interest and tax, depreciation, and 

amortization), EBIT (earnings before interest and tax), and net profit. The condition 

assignment of zeros and ones to variable Y takes the following form.: 

 

                        𝑌 = {
1, 𝑖𝑓 𝐸𝐵𝐼𝑇𝐷𝐴 < 0 ∧ 𝐸𝐵𝐼𝑇 < 0 ∧ 𝑛𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 < 0
0, 𝑖𝑓 𝐸𝐵𝐼𝑇𝐷𝐴 > 0 ∨ 𝐸𝐵𝐼𝑇 > 0 ∨ 𝑛𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 > 0 

              (1) 

 

The definition of binary variable Y is consistent with one proposed by Platt and Platt 

(2006). The authors pointed out that companies with reported negative values of 

EBITDA, EBIT, and net profit, are threatened with a bad financial condition, 

increasing the probability of bankruptcy.  
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The full research sample takes the value of 3641 companies, of which 347 companies 

were threatened with the bad financial condition (Y=1), while the other rest 2185 

companies were in a good financial situation (Y=0). These companies have been 

selected based on the definition mentioned above. The data collected for the study 

were randomly divided into three subsets – training set, validation set, and testing set. 

The training dataset is used to train the logit model. This dataset is the largest and 

contains 70% of the available data. The validation dataset and test dataset are smaller, 

and each of them contains 15% of the available data. Evaluation of the model will be 

carried out based on the validation data set. The test dataset is used to obtain unbiased 

error estimates.  

 

To explain the variability of variable Y, the logit model is used. The logit 

transformation allows replacing the limited probability interval 〈0,1〉 with 

unrestricted interval 〈-∞, + ∞〉 (Wiśniewski, 2016). Due to the Y variable's 

existing limitation, methods for the limited dependent variable must be applied. The 

linear probability model (LPM) is not appropriate, because probability values in this 

model go beyond the interval 〈0, 1〉. The LPM model can be used for preliminary 

analysis of the impact of explanatory variables on the probability of a defined event. 

Logit models are like Probit models. Both types of models can be used to solve the 

same problem. Hence, there is a relationship between them, and to analyze a selected 

problem, only one model can be chosen. The relationship between the parameters of 

both models takes the following form (Amemiya, 1981, pp. 481-536): 

 

𝛽̂𝑙𝑜𝑔𝑖𝑡 ≈ 1,6𝛽̂𝑝𝑟𝑜𝑏𝑖𝑡     (2) 

 

Based on the values of parameters of one model, it is possible to determine the values 

of parameters in the other model using the formula above. Another limitation to using 

the Probit model is the assumption that probabilities for the Y variable have normal 

or close-to-normal distribution, which is hard to achieve. 

 

The logit model has the following general form: 

 

                    𝑙𝑛
𝑝𝑖

1−𝑝𝑖
= 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑥𝑖

′𝛽 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖   (3) 

 

where 𝑙𝑛
𝑝𝑖

1−𝑝𝑖
 is logit, 𝑝𝑖 is probability of specific event, 𝛽 is vector of the model 

parameters. To estimate the value of vector 𝛽, the maximum likelihood method 

(MLM see e.g., Marzec (2003), Gruszczyński (2012) is used. In case of a sample 

containing separate observations 𝑌1, 𝑌2, … , 𝑌𝑛 (where 𝑌𝑖 = 1, for i=1,2, …, n), and 

probability 𝑃(𝑌𝑖 = 1) = 𝑝𝑖, the probability of observation of value 𝑌𝑖 = 1 or 𝑌𝑖 = 0 

can be expressed as 𝑃(𝑌𝑖) = 𝑝𝑖
𝑌𝑖(1 − 𝑝𝑖)1−𝑌𝑖. 

 

Results should be interpreted considering the marginal effects and the odds ratios. 

The sensitivity of probability p_i to endogenous variables is the function of a given 

model parameter and all predictors. The marginal effect of the change X_j on the 
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value of probability p_i takes the form: 

 
𝜕𝑝𝑖

𝜕𝑋𝑗𝑖
= 𝛽𝑗𝜆(𝑥𝑖

′𝛽) = 𝛽𝑗𝑝𝑖(1 − 𝑝𝑖)    (4) 

 

The odds ratios are exp⁡(β ̂_j ) values, where β _̂j are estimated parameters of the 

logit model. Because the econometric model is not a perfect tool, the developed 

model's quality needs to be assessed to ensure that the model has cognitive features 

proper for the analyzed research problem. To verify the quality of the model, we can 

use the error matrix, which allows checking the predicted accuracy based on a model. 

Using the error matrix (Gruszczyński, 2012), the following model quality measures 

can be determined: sensitivity, accuracy, and specificity. 

 

4. Results and Discussion 

 

For the aim of the analysis, 17 financial indicators have been used in model building. 

The set of variables is used to describe the financial situation of a company. Gissel, 

Giacomino, and Akers (2007) used a similar set of variables to describe the problem 

of corporate failure. The list of financial factors is presented in Table 1. To find the 

best combination of financial variables for predicting company failure, we employ 

logistics regression analysis and GLM estimator (Generalized Linear Model). Then 

we use the a-posteriori method to establish the final set of financial variables. We 

used a z-test to diagnose the significant factors that affect the binary variable (Y). The 

logit model of corporate failure is presented in Table 2. 

 

Table 2. Logit corporate failure prediction model for construction sector companies 

in 2017 

Predictors  
Parameter 

assessment 
Standard error z 

Constant 1 -2.517 0,983 2.56 

Return on Assets X1 0,233 0,209 1,115 

Return on Equity X2 0,00008 0,0002 0,659 

Operating profit margin X3 0,00008 0,00008 0,939 

Current assets turnover X4 -0,616 0,279 -2,209 ** 

Assets turnover X5 0,154 0,342 0,45 

Current liquidity ratio X6 0,011 0,012 0,941 

Cash ratio X7 0,02 0,059 0,331 

Debt to equity ratio X8 -0,00003 0,000001 -0,473 

Debt to assets ratio X9 -0,013 0,006 -2,014 ** 

Operating profit / Assets X10 -19,63 5,145 -3,815 *** 

Gross profit / Assets X11 -53,785 20,44 -2,631 *** 

Quick liquidity ratio X12 -0,029 0,06 -0,494 

(Net profit +  

amortisation) / Liabilities 
X13 0,061 0,448 0,136 
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(Operating profit +  

amortisation) / Short-term 

liabilities 

X14 -0,286 0,26 -1,098 

Current assets / Assets X15 0,805 0,659 1,222 

Net cash / Assets X16 -1,02 0,796 -1,282 

Equity / Assets X17 0,368 0,908 0,405 

Source: Own creation. 

 

Next step of analysis was the elimination of insignificant variables. The final logit 

model, which was used in interpretations and prediction is presented in Table 3. 

 

Table 3. Logit model after a posteriori elimination  
Logit model 

variables 

Parameter 

value 

Standar

d error 
Odds ratio z 

Constant 1 -2,38 0,435 - -5,472 *** 

Current assets turnover X4 -0,511 0,092 0,600 -5,578 *** 

Debt to assets ratio X9 -0,012 0,006 0,988 -1,997 * 

Operating profit / Assets X10 -18,284 4,947 0,00001 -3,696 *** 

Gross profit / Assets X11 -31,713 4,926 0,000001 -6,438 *** 

(Operating profit +  

amortisation) / Short-term 

liabilities 

X14 -0,263 0,147 0,769 -1,793 * 

Current assets / Assets X16 0,936 0,462 2,549 2,025 ** 

Equity / Assets X17 -0,683 0,285 0,505 -2,4 ** 

Source: Own creation. 

 

Based on the logit model, we identified the significant factors for the probability of 

corporate failure in construction companies. Seven out of 17 variables are significant 

for the probability of corporate failure at a significance level of at least p=10%. The 

factors affecting the variable Y include current assets turnover (X4), debt to assets 

ratio (X9), operating profit to assets (X10), gross profit to assets (X11), operating 

profit plus amortization to short-term liabilities (X14), current assets to assets ratio 

(X16) and equity to assets ratio (X17).  

 

At this point, we can say that the probability of a corporate failure is decreasing when 

the company reports the increase in debt to assets ratio (X9), operating profit to assets 

(X10), gross profit to assets (X11), operating profit plus amortization to short-term 

liabilities (X14) and equity to assets ratio (X17). In the case of current asset turnover 

(X4), we can say that the increase in that variable is neutral for the probability of 

failure because the odds ratio is close to 1. However, the ratio of current assets to 

assets (X16) is the only variable that affects the probability of failure with a positive 

sign. It means the bigger value of the current assets to assets ratio, the bigger 

probability of financial failure. Also, the most important (according to the logit 

model) variables for reducing the probability of financial failure are the operating 

profits to asset ratio (X10) and gross profit to asset ratio (X11) (see Table 3). 
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Then, the built logit model was assessed in terms of the use of new data. Using the 

validation and test datasets, the ROC curve was determined (Figures 1A and 1B), and 

the ratio of area under the ROC curve (AUC ratio) was calculated. These values make 

it possible to indicate the classification quality of the model. In the validation and test 

set case, the AUC value is 99%, which indicates the high classification quality of the 

constructed model. 

 

Figure 1. ROC curve and performance chart for logit model (case of validation and 

test data sets) 
1A. ROC curve for logit model 

(validation data set) 

1B. ROC curve for logit model (test 

data set) 

  
1C. Performance chart for logit model 

(validation data set) 

1D. Performacne chart for logit model 

(test data set) 

  
 

Source: Own creation. 

 

In the classification problem, the classifier's quality (in this case, the logit model) is 

based on an understanding and measure of relevance. The relevance is measured with 

precision (positive predictive value) and recall (also called sensitivity). Based on that, 

we can say how many selected items are relevant and how many relevant items are 

selected (Durica, Valaskova, and Janoskova, 2019). Both measures are presented in 

figure 1, where the precision is marked in red, and the recall measure is marked in 

blue. The precision for the full sample of enterprises (the caseloads is equal to 100%) 

is equal to 12% (Figures 1C and 1D). This is because most of the companies included 

in the research have a good financial condition. On the other hand, the recall measure 

is equal to 99%, which means that in 99% of cases, the model (or classifier) correctly 
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identifies companies with a bad financial condition. A detailed analysis will be 

carried out based on the error matrices presented in Tables 4A-4C. 

 

Error matrix examines the classification model's ability to predict failure among a 

new set of companies (Durica, Valaskova, and Janoskova, 2019). Modeling 

companies' financial situation is an important factor for recognition of the early signs 

of deterioration of the financial condition. Micro-econometric models of financial 

threat are a specific group of models that should be considered in multiple fields, like 

the economy, analyzed sector, industry, and the time horizon. The purpose of the 

constructed model is to predict the future threats related to the deterioration of the 

financial situation in construction companies. The usefulness of the model is mainly 

connected with high sensitivity and specificity values that determine the proper 

classification capability of a given model. The quality of the model should be assessed 

based on the accuracy of the prediction of bad financial condition (Y=1) and good 

financial condition (Y=0) of construction enterprises (Table 4). The quality of the 

constructed classifier was assessed based on a training sample (Table 4A), a 

validation sample (Table 4B), and a test sample (Table 4C). 

 

Table 4. Error matrix for logit model (case of training, validation and test data sets)  
Table 4A. 

Error matrix for training dataset 

Table 4B. 

Error matrix for validation dataset 
 

 Predicted 

0 1 

E
m

p
ir

ic
al

 

0 
2154 

(85,1%) 

31 

(1,2%) 

1 
61 

(2,4%) 

286 

(11,3%) 
 

 Predicted 

0 1 

E
m

p
ir

ic
al

 

0 
466 

(86,0%) 

10 

(1,8%) 

1 
7 

(1,3%) 

59 

(10,9%) 
 

 

Overall error: 3,6% 

Averaged class error: 9,5% 

Recall for Y=1: 82,4% 

Overall error: 3,1% 

Averaged class error: 6,35% 

Recall for Y=1: 89,4% 

 

 

Table 4C. 

Error matrix for test dataset 

 

 Predicted 

0 1 

E
m

p
ir

ic
al

 

0 
474 

(87,1%) 

5 

(0,9%) 

1 
17 

(3,1%) 

48 

(8,8%) 
 

 

Overall error: 4,1% 

Averaged class error: 13,6% 

Recall for Y=1: 75% 

Source: Own creation. 
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The most important measure, in terms of the developed model, is sensitivity (or 

recall). The recall is a fraction of the total amount of relevant instances that were 

retrieved. This means the recall measure indicates the percentage of construction 

companies with a company's correctly recognized status with a bad financial 

condition (Y=1). The sensitivity measure for the training dataset is equal to 82,4%. 

For the validation dataset, the sensitivity value has increased to 89,4%; however, this 

measure's test dataset value is equal to 75% (Table 4). 

 

The logit model's cognitive value is determined based on the test data sample in which 

the error values in matrix error are unbiased and indicates that 3 out of 4 enterprises 

with bad financial conditions have been correctly identified by a classifier. The 

accuracy value for the logit model is 95.6%, which means nearly 96 percent of cases 

were correctly assigned to one group based on the applied set of predictors. 

 

Comparison of the built model with others presented in the literature showed that 

there were only a few papers concerning a similar study subject. Król and Stefański 

(2014) developed several different discriminant functions for the Polish construction 

sector. The discriminant and logit analysis for bankruptcy prediction among the 

Polish construction companies has been applied by Rusiecki and Białek-Jaworska 

(2015). Their models showed overall efficiency exceeding 80%. The model was built 

based on 5 and 7 variables representing structural, profitability, debt, and liquidity 

indicators. Kapliński (2008) has noted that incorporate failure models, factors 

identified as significant allows assessing the symptoms of the financial condition of 

companies in a short period, while long-term analysis using that model was 

unreasonable due to changing economic situation (policy and accounting rules that 

have a major effect on financial results). However, as far as financial threat models 

are concerned, it is also more reasonable to use them in a short time perspective. For 

longer periods, political and economic conditions must be considered. 

 

5. Conclusions 

 

The logit corporate failure prediction model presented in this paper is a tool used to 

assess the financial condition of construction companies. Considering the growing 

payment arrears reported in the construction industry's recent period and the high 

significance of this sector and its relations with other sectors of the economy, the 

presented model might have a practical advantage. The model can be beneficial for 

investment loan providers, insurance companies, and entities selecting contractors in 

construction projects due to the possibility of the credit risk assessment. Most of the 

research on related topics is focused more on bankruptcy prediction models. In the 

context of rapid recovery in the Polish construction sector, it seems reasonable to 

identify the factors, which increase the probability of deterioration of the financial 

condition. The recognition of early warning signals is more important than the 

recognition of bankruptcy determinants. 

 

The built model uses the following variables: current assets turnover, debt to assets 

ratio, operating profit to assets, gross profit to assets, operating profit plus 
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amortization to short-term liabilities, current assets to assets ratio, and equity to assets 

ratio. The developed model is based on three financial indicators: profitability index, 

debt ratio, and structure index. The estimation of logit function parameters, analyzed 

in accounting and finances, allows formulating several conclusions. Above all, they 

confirm that debt increase is followed by a higher risk of deterioration in the financial 

and property situation. Additionally, a higher share of current assets in total assets 

harms the financial condition of construction companies. It seems to be rooted in this 

industry's specificity, distinguished by creating high-value stock, including materials, 

unfinished production, and unsold end products. According to the logit model 

estimation results, the risk of insolvency lowers along with the growing profitability 

measured by return on assets. Also, two out of seven factors (operating profit to assets 

and gross profit to assets) are significant in reducing poor financial condition 

probability.  

 

The described model has been prepared based on the financial data of 2017, chosen 

due to the high availability of information concerning a wide group of Polish 

construction companies. The complete publication of data from financial reports of 

more recent years will allow verifying the prepared model and will be a starting point 

for further studies in this field. 
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