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Abstract: 

 

Purpose: Intermittent demand is defined as infrequent or sporadic. Many forecasting errors 

are inappropriate for intermittent data. In some periods, there could be no demand, so division 

by zero must be avoided. Usually, forecasts are computed for many products; therefore, errors 

should be scale-independent (or relative). Many ex-post forecast errors, such as MASE (Mean 

Absolute Scaled Error) or MAE (Mean Absolute Error), indicate as best very low forecasts, 

sometimes even zero forecasts. Therefore, many researchers think that measures taking into 

account stock and consumer service levels should be used instead of conventional forecasts. It 

might suggest that typical forecast errors are useless for intermittent data. In this article, the 

contradictory hypothesis is verified. It is stated that only unbiased forecast errors should be 

used if the conclusions are to be correct. 

Design/Methodology/Approach: Definition of unbiased forecast error is proposed and 

verified for popular forecast errors, such as ME (Mean Error), MSE (Mean Square Error), 

MAE, or MASE. The theoretical properties of these errors are considered concerning their 

biasedness. Forecasts are made based on Croston’s and TSB methods, but also average and 

median were used as forecasting methods to emphasize conclusions. 

Findings: In the empirical example, forecast errors are computed for intermittent demand 

times series to verify theoretical conclusions. The general conclusion is that only unbiased 

forecast errors provide proper indications according to forecast accuracy. This finding is true 

in general, not only for intermittent demand.   

Practical Implications: Presented considerations might be useful for enterprises dealing with 

intermittent demand forecasting such as distribution centers, warehouse centers, and so 

on.        

Originality/value: To the author’s knowledge, forecast error bias was not analyzed before in 

the literature. A new forecast error is proposed, which was named RMSSE (Root Mean Square 

Scaled Error).    
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1. Introduction 

 

Intermittent demand is particular and is usually defined as infrequent or sporadic. That 

kind of time series often consists of only a few demands and many zeros. Therefore, 

intermittent demand data require specific forecasting methods and special forecasting 

accuracy measures. Many popular forecast errors, such as MAPE (Mean Absolute 

Percentage Error), could not be applied because of zero division. For intermittent time-

series, demand is often zero. Thus MAPE (and other percentage errors) are undefined.  

It is common knowledge that the best intermittent demand forecasting method 

indicates the forecast error used. To be more precise, such error measures like MASE 

or MAE favor methods yielding lower forecasts, sometimes even zero forecasts, 

which is hard to accept, especially stock management and consumer service levels. 

 

This article states that unbiased forecast errors should be used to compare the accuracy 

of forecasting methods. Generally, biased forecasts errors favor underestimated or 

overestimated forecasts. Biasedness of the following forecast errors will be verified: 

ME, MSE, MAE, MASE, RMSSE. The last error – RMSSE (Root Mean Square 

Scaled Error) is an author’s proposal. All the above-mentioned errors will be verified 

on a theoretical and empirical basis. In the empirical example, intermittent demand 

times series will be analyzed. 

 

The article is organized in the following manner. In the second section literature 

review is presented. The methodological part definition of biasedness is presented, 

and the biasedness of analyzed errors is discussed about the proposed definition. Also, 

forecasting methods are shortly described. In the third section, forecasts for ten 

intermittent demand time series are computed, and forecast errors are estimated. 

Forecast errors are then evaluated concerning biasedness. In conclusion, unbiased 

forecast errors are pointed out, and future research directions are indicated.     

 

2. Literature Review 

 

A comprehensive review of forecast errors is presented in (Hyndman and Koehler, 

2006). In this paper, forecasting error measures are divided into scale-dependent 

measures, percentage errors, relative errors, relative measures, and scaled errors.The 

most popular scale-dependent measures include Mean Error (ME), Mean Square Error 

(MSE), or Mean Absolute Error (MAE). Sometimes different variants of the above 

measures are proposed, where, instead of means, medians are calculated. That kind of 

error is robust concerning outliers. Scale-dependent errors are useless if forecasts 

errors for many products have to be analyzed. Each error has a different unit (or scale), 

so it is impossible to compare them.   

 

Scale-independent is the percentage of errors. The most popular is the Mean Absolute 

Percentage Error (MAPE). Sometimes also symmetric Mean Absolute Percentage 

Error (sMAPE) is applied. However, the symmetry of sMAPE was questioned 

(Goodwin and Lawton, 1999; Koehler, 2001). These errors are inappropriate for 
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intermittent demand because of division by zero. In many periods intermittent demand 

is zero. Therefore percentage errors are just not defined. 

Measures based on relative errors are also scale-independent. A relative error for a 

single period is a ratio of errors for analyzed and benchmark methods (Hyndman and 

Koehler, 2006). This class of errors Means Relative Absolute Error (MRAE), and 

Geometric Mean Relative Absolute Error (GMRAE) is recommended. These 

measures may compare different forecasting methods, but they are always tied with 

the benchmark method. 

Sometimes also relative measures, which are quotients of given error measures (but 

not single errors) for two methods, are applied (Hyndman and Koehler, 2006; Syntetos 

and Boylan, 2005; Syntetos, 2001). They could be used for scale-dependent or 

percentage errors. It is emphasized that relative error measures based on geometric 

mean are robust to outliers (Syntetos, 2001). Those kinds of measures require at least 

two forecasts for the same series to compute a mean or a median. In the case of a 

single forecast, these measures become a relative error. In comparing forecasting 

methods also non-parametric alternatives are used, such as Percentage Better (PB) or 

Percentage Best (PBt) forecasts, where fractions of better (or best) forecasts are 

computed for a given method. However, these measures do not take error sizes into 

account, which could be misleading.  

The above errors are scaled about out-of-sample values (values for an ex-post forecast 

horizon). In (Hyndman and Koehler, 2006), a new measure is proposed, Mean 

Absolute Scaled Error (MASE), scaled on an in-sample MAE from naïve forecasts. 

MASE is recommended for intermittent data (Hyndman, 2006). It is scaled, and it is 

easily applicable for intermittent demand series. However, two series with the same 

forecast errors should be noticed, but different in-sample values will have a different 

MASE, which might be confusing. Another widely known scaled measure is the 

MAE/Mean Ratio, a quotient of the MAE/ME, where all values come from an ex-post 

forecast horizon (out-of-sample values). The problem is that for intermittent data, ME 

is often close to zero, which makes the distribution of MAE/ME highly skewed.  

As mentioned, error measures like MASE or MAE could indicate as best methods 

yielding low forecasts, sometimes even zero forecasts (Teunter and Duncan, 2009). 

An attempt to solve this problem was proposed in (Prestwich et al., 2014), where 

mean-based measures are presented. In mean-based measures, forecasts are compared 

with point empirical values but with an in-sample mean (if there is stationarity). Many 

mean-based errors could be defined. The disadvantage of that kind of error is that the 

forecast horizon's actual values do not matter because in-sample means are used 

instead.   

Interesting inventory-based measures like Cumulated Forecast Error (CFE), Number 

of Shortages (NOS), and Periods In Stock (PIS) are presented in (Wallström and 

Segerstedt, 2010). Generally, these errors simulate what would happen to fictitious 
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stock if its level would depend only on the given forecasting method. There are also 

many other proposals about intermittent demand forecast accuracy. In (Snyder, Ord, 

and Beaumont, 2012) and (Kolassa, 2016), it is suggested that predictive distributions 

should be evaluated instead of point forecasts. Many inventory-based measures are 

also used in (Syntetos, Babai, and Gardner, 2015), (Teunter and Duncan, 2009), 

(Engelmeyer, 2016). 

The most popular intermittent demand forecasting method is Croston's method 

(Croston, 1972; Syntetos, 2001). It is based on exponential smoothing applied 

separately to demand size and demand intervals. Croston's method is biased and has 

some other drawbacks; therefore, some modifications were proposed, such as SBA 

(Syntetos–Boylan Approximation) (Syntetos and Boylan, 2005). Are SBA and 

Croston's methods, there are demand intervals that could be updated only in periods 

with non-zero sales. It often leads to overestimated forecasts if there are obsoletes. In 

the TSB method, sales probability that could always be updated is used instead of 

demand intervals (Teunter, Syntetos, and Babai, 2011). There are also other proposals 

dealing with obsolescence, such as hyperbolic exponential smoothing (Prestwich, 

Tarim, Rossi, and Hnich, 2014a). In intermittent demand, forecasting also SES 

(Simple Exponential Smoothing) or MA (Moving Average) are used, often as a 

benchmark (Syntetos, 2001). Simpler methods sometimes even give better results 

(Doszyń, 2019). 

3. Methods  

 

Before deciding which forecasting method to choose, it is necessary to specify a 

criterion for using the best one. Most often, the selection of the forecasting methods 

is based on one (or more) prediction errors. However, not all of them lead to identical 

conclusions. 

Single forecast error could be expressed as:  

 𝑒𝑡 = 𝑥𝑡 − 𝑥𝑡         (1) 

𝑥𝑡 - forecasted variable, 

𝑥𝑡 - forecast for the period t, 

𝑡 = 1, 2, … , ℎ - forecasted periods (forecast horizon). 

In the whole article is assumed that in-sample periods are 𝑡 = 1, 2, … , 𝑛 and forecasted 

periods are 𝑡 = 1, 2, … , ℎ, where n is a number of in-sample periods and h is a forecast 

horizon (number of forecasts). Also it is assumed that time series are stationary, but 

conclusions might be easily generalized to cases, when variables are functions of time. 



Mariusz Doszyń  

1117 

Most forecast errors are based on mean error (𝑒�̅�), mean of squared errors (𝑒𝑡
2̅̅ ̅) or 

mean of absolute errors (|𝑒𝑡|̅̅ ̅̅̅). Forecasts are unbiased if 𝑒�̅� = 0. In that case mean of 

actual values is equal to forecasts mean. Hence forecasts mean is on the same level as 

mean of the forecasted variable.  

The question is if all forecasts errors are equally sensitive to forecasts biasedness? It 

can be assumed that not every error is the same from the point of view of biasedness. 

Before the forecasting method is chosen, therefore, it is necessary to assess the 

biasedness of forecasts errors, as these errors are common criterion for the choice of 

the forecasting method.   

A forecast error that favors biased forecasts, i.e. overestimated or underestimated 

forecasts, will be classified as biased error. Below, definition of biasedness of 

forecasts error is proposed. 

Definition 

Forecasts error b is unbiased if it reaches the optimal (usually minimal) value for 

unbiased forecasts 

Let’s assume that we have actual 𝑥1, 𝑥2, … , 𝑥ℎ and forecasted values 𝑥1, 𝑥2, … , 𝑥ℎ in 

analyzed periods 𝑡 = 1, 2, … , ℎ and prediction error b, based on these values. 

Error b is unbiased if it takes an optimal value 𝑏𝑜𝑝𝑡 (usually minimal) if forecasts are 

unbiased, what is true when 𝑒�̅� = 0. In other words, forecast error b is unbiased if  

𝑏 = 𝑏𝑜𝑝𝑡  ˄ 𝑒�̅� = 0          (2) 

where 

b - considered forecast error, 

𝑏𝑜𝑝𝑡 - the optimal (usually minimum) value of error b, 

𝑒�̅� - mean value of forecasts error.  

Based on the above definition, it can be concluded that forecasts error can be 

considered unbiased if it reaches its optimal value for unbiased forecasts. Unbiased 

forecasts error increases as the forecasts biasedness increases. On the other hand, if a 

forecast error is biased, it can reach its minimum value for predictions that differ from 

the expected value of the variable being analyzed.   

In the next step, selected popular forecasts errors will be analyzed from the point of 

view of their biasedness. Presented errors are often the basis of other forecasts errors, 

so the conclusions regarding them may also refer to other errors. 
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From the point of view of forecasts biasedness the primary error is ME (Mean Error): 

𝑀𝐸 = 1/ℎ ∑ 𝑒𝑡 =ℎ
𝑡=1 𝑒�̅�         (3) 

ME is an unbiased forecasts error. This error reaches an optimal value of zero when 

the average of predictions is equal to the average of the forecasted variable 

𝑀𝐸 = 0 ⇔ 𝑒�̅� = 0          (4) 

As the forecasts biasedness increases, the (absolute) value of ME increases. ME can 

be negative, so in its case the optimal value (equal to zero) is not the same as the 

minimum value. For example, for the Mean Square Error (MSE) or the Mean Absolute 

Error (MAE), the optimal value is the minimum error value. To sum up, according to 

the proposed definition, ME error is an unbiased forecasts error. 

MSE is probably the most popular forecasts error. It is the mean of squared errors  

𝑀𝑆𝐸 = 1/ℎ ∑ 𝑒𝑡
2 =ℎ

𝑡=1 𝑒𝑡
2̅̅ ̅         (5) 

MSE is an unbiased forecast error. According to the proposed definition of forecast 

error biasedness it could be noticed that 

𝑀𝑆𝐸 = min ⇔ 𝑒�̅� = 0          (6) 

MSE could be decomposed by subtracting and adding the mean of actual values  

𝑀𝑆𝐸 = 𝐸(𝑥𝑡 − 𝑥𝑡)2 = 𝐸(𝑥𝑡 − �̅�𝑡 + �̅�𝑡 − 𝑥𝑡)2       (7) 

Because 𝐸[(𝑥𝑡 − �̅�𝑡)(�̅�𝑡 − 𝑥𝑡)] = 0 then 

𝑀𝑆𝐸 = 𝐸(𝑥𝑡 − �̅�𝑡)2 + 𝐸(�̅�𝑡 − 𝑥𝑡)2 = 𝐷2(𝑥𝑡) + (�̅�𝑡 − �̅�𝑡)
2
     (8) 

It can therefore be concluded that MSE is equal to the sum of the variance of predicted 

variable in the forecasts horizon 𝐷2(𝑥𝑡) and square of forecasts biasedness 

(�̅�𝑡 − �̅�𝑡)
2
. Therefore MSE reaches its minimum when forecasts are unbiased. In that 

case MSE error is reduced to the variance of predicted variable. So the MSE is an 

unbiased forecasts error. If forecasts are biased, the variance 𝐷2(𝑥𝑡) does not change 

and the MSE error increases due to biasedness by the factor (�̅�𝑡 − �̅�𝑡)
2
. Hence, MSE 

takes into account biasedness of forecasts.  

It could be also shown by taking the first derivative (and checking the sign of the 

second) that 𝑀𝑆𝐸 = 𝐸(𝑥𝑡 − 𝑥𝑡)2 in minimal when 𝑥𝑡 = �̅�𝑡, so forecast are equal to 

the mean of the forecasted variable. This confirms the unbiasedness of MSE.  
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In case of other errors based on MSE, for example Root Mean Square Error (RMSE), 

the conclusions are analogous, so RMSE is also an unbiased forecasts error. It also 

addresses other errors based on the mean of squared errors. 

Previous forecasts errors are characterized by the lack of biasedness. This is not the 

case with the next error, i.e. the Mean Absolute Error (MAE). This error is the mean 

of absolute errors 

𝑀𝐴𝐸 = 1/ℎ ∑ |𝑒𝑡|ℎ
𝑡=1 = |𝑒𝑡|̅̅ ̅̅̅         (9) 

MAE reaches a minimum if the forecasts are at the median level of the forecasted 

variable. For asymmetric distributions median is different than mean and in these 

cases MAE is a biased forecast error. MAE does not reach the minimum value for 

forecasts at the mean level, but only for forecasts at the median level, therefore, 

according to the proposed definition, it should be considered a biased forecast error.  

To sum up, it could be noticed that for asymmetric distributions, when 𝑀𝑒(𝑥𝑡) ≠ �̅�𝑡   

𝑀𝐴𝐸 = min ⇔ 𝑒�̅� ≠ 0        (10) 

Similar conclusions relate to other errors based on absolute deviations. 

Presented errors (ME, MSE, MAE) are scale-dependent, which might be problematic 

if forecasts for many products are to be at once evaluated. Therefore, scale-

independent errors, such as MASE are often recommended:  

𝑀𝐴𝑆𝐸 =
1/ℎ ∑ |𝑒𝑡|ℎ

𝑡=1

1/(𝑛−1) ∑ |𝑥𝑡−𝑥𝑡−1|𝑛
𝑡=2

       (11) 

where h is a number of forecasts and n is the number of in-sample periods. 

MASE could be treated as a MAE in the forecasts horizon divided by in-sample MAE 

for naïve forecasts. If 𝑀𝐴𝑆𝐸 < 1, then a verified method is better than naïve (in-

sample) forecasts. MASE can not be computed only if all in-sample values are equal.  

As mentioned, MAE is biased if median is different than mean and it also applies to 

MASE. For asymmetric distributions MASE should be treated as a biased forecasts 

error. MASE is biased because it is based on absolute forecasts errors.  

Therefore, new measure is proposed that is similar to MASE, but is based on squared 

forecasts errors. It is called RMSSE (Root Mean Square Scaled Error): 

𝑅𝑀𝑆𝑆𝐸 = √
1/ℎ ∑ 𝑒𝑡

2ℎ
𝑡=1

1/(𝑛−1) ∑ (𝑥𝑡−𝑥𝑡−1)2𝑛
𝑡=2

      (12) 
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The logic behind RMSSE is similar to that in MASE. Mean squared errors in the 

forecast horizon are divided by (in-sample) mean squared errors for naïve forecasts. 

If 𝑅𝑀𝑆𝑆𝐸 < 1 then forecasts outperform naïve forecasts. It is a scaled error, always 

possible to calculate for intermittent data if not all in-sample values are equal. 

Moreover, RMSSE is unbiased, what is emphasized in the presented article.  

Forecasts will be calculated, beyond others, by means of Croston’s and TSB methods.      

In Croston’s method the demand size and demand intervals are updated only in periods 

with non-zero sale. If 𝑥𝑡 > 0, then: 

𝑥𝑡
+ = 𝑥𝑡−1

+  + 𝛼(𝑥𝑡
+ − 𝑥𝑡−1

+ )       (13) 

�̂�𝑡 = �̂�𝑡−1 + 𝛽(𝑞𝑡 − �̂�𝑡−1)       (14) 

where 

𝑥𝑡
+ - demand size (non-zero sale), 

𝑥𝑡
+ - smoothed demand size, 

�̂�𝑡 - smoothed demand interval,  

𝑞𝑡 - number of periods since the last non-zero sale, 

𝛼, 𝛽 ∈ 〈0,1〉 - smoothing factors. 

If 𝑥𝑡 = 0, then  𝑥𝑡
+ = 𝑥𝑡−1

+  and  �̂�𝑡 = �̂�𝑡−1. Smoothed values are a relation of these 

two counterparts: 𝑥𝑡 = 𝑥𝑡
+/�̂�𝑡, hence the smoothed demand size is divided by the 

smoothed demand interval.  

In the TSB method not demand intervals but sales probability is used. 

If 𝑥𝑡 > 0, then:  

𝑥𝑡
+ = 𝑥𝑡−1

+  + 𝛼(𝑥𝑡
+ − 𝑥𝑡−1

+ )       (15) 

�̂�𝑡 = �̂�𝑡−1 + 𝛽(1 − �̂�𝑡−1)       (16) 

where 

�̂�𝑡 - smoothed sales probability.  

If 𝑥𝑡 = 0, then: 
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𝑥𝑡
+ = 𝑥𝑡−1

+          (17) 

�̂�𝑡 = �̂�𝑡−1 + 𝛽(0 − �̂�𝑡−1)       (18) 

Smoothed demand is a product of adjusted demand size and sales probability: 𝑥𝑡 =
𝑥𝑡

+�̂�𝑡. In TSB method sales probability is updated in each period, what is better on 

account of obsoletes.  

4. Empirical Results  

 

In the research, ex-post forecasts were calculated for ten intermittent demand time 

series. These are weekly time series, where the first 205 weeks consist of in-sample 

values and the last 5 weeks are out-of-sample values, for which ex-post forecast errors 

were estimated. Analyzed data come from a company selling mostly tools and work 

clothes. Demand is identified with sales because, in the considered company, the 

consumer service level is almost one. Basic information about the considered time 

series are presented in the table below. 

Table 1. Basic information about ten analyzed intermittent demand time series 
Products Number of observations Sales frequency Mean Median Max 

1 198 0.35 1.00 0 14 

2 205 0.15 0.20 0 4 

3 205 0.27 0.60 0 7 

4 205 0.18 0.20 0 2 

5 190 0.12 0.20 0 7 

6 15 0.20 0.20 0 1 

7 205 0.16 0.20 0 4 

8 165 0.19 0.20 0 2 

9 110 0.41 0.80 0 10 

10 30 0.20 1.80 0 17 

Min 15 0.12 0.20 0 1 

Max 205 0.40 1.80 0 17 

Source: Own elaborations. 
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Sales were analyzed for the 205 weeks, but some products were introduced later. 

Hence the number of observations is in the range 15 - 205. Sales frequency is 

understood as a share of weeks with non-zero sales. It is visible that intermittence is 

present. Sales frequency was between 0.12 - 0.40 with a mean equal to 0.22, so on 

average, there was only one week for five with positive (higher than zero) sale. Mean 

sale for analyzed products was between 0.20 - 1.80; hence there were mostly slow-

moving items. Each product's sales frequency was below 0.50, so the median for each 

item was equal to zero. In the case of intermittent demand, there are often outliers. 

Therefore maximum sales were also checked, for some product sales were indeed 

high. The highest weekly sale was equal to 17 pieces (product no. 10). The sales time 

series for the exemplary product (product no. 2) is presented in the graph below.  

 

Figure 1. Examplary intermittent demand time series (product no. 2, weekly data)  

 
Source: Own elaborations based on the data from the analyzed company. 

 

Four forecasting methods were applied: average, median (zero forecasts), Croston’s 

(CR) method and TSB method.  

 

Croston’s and TSB methods were described in the methodological part. In each of 

these methods there are two smoothing factors, 𝛼 and 𝛽. They were set at the level 

𝛼 = 𝛽 = 0.1. In case of Croston’s and TSB methods first values were always taken 

as a starting ones.    

 

The simple average was used as a forecasting method because, in the article problem 

of forecast errors, biasedness is considered about biasedness of forecasts. To remind, 

forecast error is defined as biased if it favors underestimated or overestimated 

forecasts. Forecasts calculated on the average level are unbiased. It is true for 

stationary times series, and intermittent times series usually have that property. Also, 

these are considered in the presented research.  

 

Forecasts were also estimated on the median level. Because sales frequency for all ten 

products was lower than 0.50, the median was always equal to zero. Therefore 

forecasts on the median level are called zero forecasts. These forecasts are highly 
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underestimated, and they could be treated as an extreme case. If considered forecast 

error points zero forecasts as best, it will prove that this error is biased because it 

favors highly underestimated forecasts.  

 

For these four forecasting methods (average, zero forecasts, Croston’s, and TSB 

methods), five forecast errors were calculated: ME, MSE, MAE, MASE, and RMSSE. 

Their errors were described in the methodological part. The first three errors (ME, 

MSE, MAE) are scale-dependent, so they could not be directly compared (e.g., 

averaged). Therefore also scale-independent errors are considered (MASE, RMSSE). 

The results for all these errors are presented in the tables below.   

 

Table 2. Scale-dependent errors for considered forecasting methods  
  ME MSE MAE 

No. Average Zero forecasts CR TSB Average Zero forecasts CR TSB Average Zero forecasts CR TSB 

1 0 1.00 -0.14 0.02 4.00 5.00 4.02 4.00 1.60 1.00 1.69 1.59 

2 0 0.20 0.03 0.13 0.16 0.20 0.16 0.18 0.32 0.20 0.30 0.24 

3 0 0.60 0.12 0.28 1.44 1.80 1.45 1.52 0.96 0.60 0.89 0.79 

4 0 0.20 -0.02 -0.26 0.16 0.20 0.16 0.23 0.32 0.20 0.33 0.47 

5 0 0.20 0.01 0.11 0.16 0.20 0.16 0.17 0.32 0.20 0.31 0.25 

6 0 0.20 0.09 -0.15 0.16 0.20 0.17 0.18 0.32 0.20 0.26 0.41 

7 0 0.20 -0.02 -0.04 0.16 0.20 0.16 0.16 0.32 0.20 0.33 0.34 

8 0 0.20 -0.07 0.01 0.16 0.20 0.16 0.16 0.32 0.20 0.36 0.31 

9 0 0.80 0.09 0.33 0.96 1.60 0.97 1.07 0.96 0.80 0.94 0.89 

10 0 1.80 0.33 -0.04 5.76 9.00 5.87 5.76 2.16 1.80 2.09 2.17 

Min 0.00 0.20 -0.14 -0.26 0.16 0.20 0.16 0.16 0.32 0.20 0.26 0.24 

Max 0.00 1.80 0.33 0.33 5.76 9.00 5.87 5.76 2.16 1.80 2.09 2.17 

Source: Own elaborations. 

 

ME informs about forecast biasedness. The two extreme methods are average and zero 

forecasts. Averages are unbiased because each considered time series in-sample 

average was always equal to the out-of-sample average. This equality would 

sometimes not be true, but this equality is very probable for stationary time series, 

which often describes intermittent demand data. Hence in the presented example, an 

average could be treated as a completely unbiased forecasting method. For this 

method, ME is always equal to zero.  
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On the other extreme, there are zero forecasts, which were obtained as median sales 

values. This method is obviously highly underestimated and not acceptable due to the 

consumer service level. ME for zero forecasts was between 0.20 - 0.80; hence these 

forecasts are worst about biasedness. The remaining two methods (Croston’s and 

TSB) were only slightly biased in both directions. Sometimes they were 

underestimated and sometimes - overestimated. 

 

According to the verified hypothesis, ME and MSE are unbiased forecasts, errors, and 

MAE is a biased one. ME is unbiased “by definition”; it is always equal to zero for 

unbiased forecasts, which was already discussed. The absolute value of ME growths 

with biasedness of forecasts. In the methodological part, it was stated that MSE is 

unbiased. It is now visible because MSE is the lowest for average method and highest 

- for zero forecasts. For the average method, MSE is between 0.16 - 5.76, while for 

zero forecasts, it is between 0.20 - 9.00. The range for TSB is the same as for the 

average method. For Croston’s method, MSE is between 0.16 - 5.87. Hence the results 

are very similar. Therefore MSE is the lowest for unbiased forecasts and highest - for 

(biased) zero forecasts. 

 

Conclusions are quite different for MAE, which, according to theoretical properties, 

is a biased forecast error. MAE is the lowest for zero forecasts, for which it is between 

0.20 - 1.80. MAE favors highly underestimated (zero) forecasts. Zero forecasts are on 

the median level, and MAE reaches a minimal value exactly for the median. 

According to MAE, the average method, which is unbiased, is much worse. For this 

method, MAE is in the interval of 0.32 - 2.16. Regarding MAE, TSB and Croston’s 

methods are worse than zero forecasts, which is an unacceptable forecasting result. 

This example shows that mean and median are different; forecast errors based on 

absolute deviations favor biased forecasts. In the case of intermittent demand, 

distributions are highly positively skewed. Therefore errors like MAE indicate as best 

underestimated (even zero) forecasts. Therefore, in such cases, forecast errors should 

be based on squared (not absolute) errors. 

 

Another desired property of forecasts errors for intermittent data is scale-

independence. Two that kind of measures is presented in the table and graphs below.  

MASE and RMSSE are useful when errors have to be compared for many products, 

which is often the case for intermittent demand forecasting systems.  

 

MASE, similarly as MAE, is based on absolute errors, therefore it is also biased. Also 

conclusions are similar as in case of MAE. Mean MASE is lowest for zero forecasts 

and much higher for average method. For TSB and Croston’s methods mean MASE 

is almost the same as for average method. Hence MASE is best for zero forecasts, 

which is not surprising if biasedness of this error is taken into account.  
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Table 3. Scale-independent errors for considered forecasting methods  
  MASE RMSSE 

Products Average Zero forecasts CR TSB Average Zero forecasts CR TSB 

1 0.97 0.61 1.02 0.96 0.68 0.76 0.68 0.68 

2 0.97 0.61 0.93 0.74 0.52 0.59 0.52 0.55 

3 0.99 0.62 0.92 0.82 0.65 0.73 0.66 0.67 

4 1.02 0.64 1.07 1.51 0.65 0.72 0.65 0.77 

5 0.90 0.56 0.89 0.71 0.43 0.48 0.43 0.45 

6 0.90 0.56 0.74 1.14 0.67 0.75 0.69 0.71 

7 0.85 0.53 0.88 0.91 0.52 0.59 0.52 0.53 

8 0.92 0.58 1.04 0.90 0.65 0.72 0.65 0.65 

9 0.81 0.68 0.80 0.76 0.50 0.64 0.50 0.52 

10 0.87 0.73 0.84 0.87 0.48 0.60 0.49 0.48 

Mean 0.92 0.61 0.91 0.93 0.58 0.66 0.58 0.60 

Source: Own elaborations. 

Figure 2. MASE for four forecasting methods for analyzed ten products 

 
Source: Own elaborations. 

RMSSE is an author’s proposal. The logic behind this measure is similar to that of 

MASE, but RMSSE is based on squared errors, so it is unbiased forecasts error. 

RMSSE is lowest for average method. It is also low for Croston’s and TSB methods 

and highest - for zero forecasts. That kind of conclusions are more reasonable with 
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regard to intermittent demand forecasting and especially - due to consumer service 

level.    

Figure 3. RMSSE for four forecasting methods for analyzed ten products 

 
Source: Own elaborations. 

5. Summary and Concluding Comments 

 

In the enterprise, it is often necessary to choose the best forecasting method to predict 

products' sales. Before that kind of decision, proper forecasts error should be settled.  

When the forecasted variable's distribution is symmetric, so the mean is equal to the 

median, all forecasts errors might be applied. They will provide consisted of 

conclusions. However, most economic variables are asymmetric, most often 

positively skewed. Intermittent demand is almost always highly positively skewed. In 

such cases, the median is lower than the mean, and errors based on absolute deviations 

favor biased (underestimated) forecasts. Measures based on absolute errors reach 

minimum value for median (not mean). In the case of intermittent demand, it may 

conclude that zero forecasts are the best. Underestimated forecasts are unacceptable 

due to the consumer service level. If sales frequency is below 0.50, then the median is 

always zero. Hence zero forecasts are the best about, e.g., MAE or MASE. That kind 

of error was classified in this article as biased forecasts errors. To avoid that kind of 

problem, measures based on squared errors ought to be applied. They are unbiased 

forecast errors because they reach the minimum for forecasts on the mean level.  

 

To sum up, for asymmetric distributions for which the median is different from mean 

unbiased forecasts, errors should be used. In the case of intermittent demand data, 

usually forecasts for many products are calculated. Therefore scale-independence is 

also important. In the article, a new error fulfilling these requirements was proposed. 

It was named RMSSE (Root Mean Square Scaled Error).  

 

In the future, research biasedness and other properties of different forecast errors will 

be verified, also in the context of intermittent demand data. 
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