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Abstract: 

 

Purpose: The purpose of the article is the selection of the best criteria for the normalisation 

method in order to achieve the minimal order picking route and time. 

Design/Methodology/Approach: When a company utilizes warehouse with the shared storage 

system, every product can be stored in many, sometimes very distant from each other, 

locations. Locations were selected by the multiple-criteria decision-making technique – 

TOPSIS. The research was conducted by means of the simulation methods. Every location was 

described by three criteria (distance from the I/O point, degree of demand satisfaction and the 

number of other picked products in the proximity of the analyzed location), for which 37 

combinations of weights and 18 normalization formulas were applied. For every combination 

of weights and normalization method 1000 orders were generated.  

Findings: The best results were obtained when high weight was assigned to the degree of 

demand satisfaction. It was hard to indicate unequivocally the best normalization method. 

However, quotient inversions generally yielded slightly worse results than standard scores 

and feature scaling. 

Practical Implications: Obtained results indicate that the presented approach can be useful 

in real warehouse management. It is a quite versatile method that can be adopted to various 

situations.  

Originality/value: Although the routing problem in order picking has already been widely 

discussed, the literature about the problem of selection of locations in shared storage is quite 

scarce. Therefore, the presented approach can serve as one method of selection of locations 

in the shared storage system. 
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1. Introduction 

 

On the average, warehouse activities constitute up to 39% of total logistics costs in 

European companies (Fumi et al., 2013). Of all warehouse activities, order picking 

constitutes the largest part (about 55%) of all warehouse operating costs (Bartholdi 

and Hackman, 2019). Order picking can be organised in many ways. Companies can 

utilise automated systems (parts-to-picker ones), such as automated storage and 

retrieval systems (AS/RS), storage and retrieval (S/R) machine, modular vertical lift 

modules (VLM), or carousels (Roodbergen and Vis, 2009). However, as of the 

beginning of the 21st century, about 80% of companies still used the classical, manual 

picker-to-parts systems (De Koster et al., 2007). Despite the fact that by 2012 this 

share dropped to 74% (Napolitano, 2012), these systems are still used in the largest 

part of companies. For the picker-to-parts systems the order picking can be divided 

into four main activities (Bartholdi and Hackman, 2019). The distribution of order 

picking time in such systems is presented in Table 1. 

 

Table 1. Distribution of order-picking time 
Activity Percentage of order-picking time 

Travelling 55% 

Searching 15% 

Extracting 10% 

Other activities 20% 

Source: Bartholdi & Hackman, 2019. 

 

Travelling consists of over the half of the order picking time. The rest of activities, 

although sum to 45%, alone constitute much smaller parts. Therefore, when the 

process of order picking is to be optimised, the biggest improvements can be achieved 

by reducing the order picking route. The order picking route is the route that the picker 

must travel to pick the order. There are three main features that influence the length 

of order picking route: storage assignment, warehouse layout and routing technique. 

 

The storage assignment is the first issue that must be considered when planning the 

warehouse. There are five main types of storage assignment (Kofler, 2014; Le-Duc, 

2005):  

 

• random (chaotic) storage assignment, 

• closest-open-location storage assignment, 

• dedicated storage assignment, 

• class-based storage assignment, 

• family-grouping storage assignment. 

 

For random storage assignment, when goods arrive at the warehouse, they are placed 

in available locations randomly, without any pattern and regardless of the properties 

of products’ rotation, demand, etc. The advantage of random storage assignment is 

good space utilisation, but the main drawback of this approach is that the goods are 
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scattered around the warehouse and the same products can be placed in sometimes 

very distant from one another locations. Although purely random assignment is rarely 

met in real situations, it is frequently used in theory as a benchmark showing, how 

utilisation of other, better organised storage assignments can improve the process of 

order picking.  

 

The other type of storage assignment is the closest-open-location one. When goods 

arrive at the warehouse, they are stored in the closest to the I/O point locations. This 

approach is used when the pickers select storage locations by themselves. Advantages 

and drawbacks of this storage assignment are the same as for the random one. In a 

long term, the closest-open-location storage assignment converges to the random one. 

 

Dedicated storage assignment means that every product is assigned to a single location 

(or group of locations if requested amounts do not fit into the single location) and 

every location is dedicated to single product. The advantage of dedicated storage 

assignment is that every product has one and the same place in the warehouse, 

therefore it is easy (even for the large number of products) for the pickers to memorise 

the placement of products. The drawback of this approach is poor space utilisation. 

 

Class-based storage assignment is one of the most frequently used systems in real 

situations. Products are placed in the warehouse with accordance to appropriate class 

membership. Products are assigned to appropriate class on the basis of their popularity 

(for example turnover or the COI index) (Kofler, 2014). There is no clear indication, 

into how many classes the products should be divided. Some authors suggest that for 

the low-level picker-to-parts system optimal number of classes should be between 2 

and 4 (Petersen et al., 2004). Van den Berg and Gademann (2000) performed the 

simulation analysis for the automated systems, such as AS/RS and concluded that in 

such case the number of classes should be 6. When various assumptions were 

considered, Yu, de Koster and Guo (2015) concluded that the number of classes 

should never exceed 6. The most frequently used number of classes is 3. In such case, 

we talk about the ACB-class storage assignment. It is worth noting that the division 

of products into appropriate classes can be different for various cases.  

 

For example, in inventory theory products are divided into classes with respect to 

contribution of value of their sales in total value of sales. Such approach is not 

appropriate for placing products in the warehouse, where measures based on turnover 

should be used instead (Frazelle, 2002). The most popular division method is based 

on Pareto’s strategy. It assumes that 20% of the fastest-moving products accounts for 

80% of total turnover (class A). Next 30% of products accounts for 15% of total 

turnover (class B) and remaining 50% of products – for 5% of total turnover (class C). 

Products belonging to the class A should be placed in locations that are the closest to 

the I/O point and products in the class C – in the most distant from the I/O point 

locations. By applying the ABC-class based storage can itself decrease the order 

picking route and time even by 45% (Le-Duc, 2005). 
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The family-grouping storage assignment means that the products that are frequently 

ordered together, are considered. Such products should be placed in the warehouse 

close together in order to pick them from locations placed at the same aisle. 

 

It is worth noting that the above-mentioned storage assignment type can be used 

together. For example, after dividing products into classes ABC, within each class 

they can be placed randomly or with the closest-open-location assignment. The 

dedicated storage assignment within classes ABC is also possible. 

 

Regardless of the storage assignment type, the order picking route and time can be 

decreased by utilisation of appropriate aisle design. The most widely used warehouse 

layout is the rectangular one with parallel picking aisles and one or more orthogonal 

cross aisles. Its popularity also results from the fact that it is the easiest one to 

implement. However, there are possible other layouts. Sometimes they depend on the 

shape of buildings, where warehouses are located. One of the most popular, different 

from the rectangular one, is the L-shaped layout (De Koster et al., 2007). For specific 

locations of the I/O point, such designs as the Flying-V and Fishbone can decrease the 

order-picking routes even by 10% to 20% (Gu et al., 2010; 2012). Other methods of 

improving the order picking process are connected with its organisation. The most 

popular organisation of picking policies include zone picking, wave picking or batch 

picking (Shah and Khanzode, 2017). 

 

The classification of storage assignment types results from the most general division 

of the storage types. There are two of them: dedicated and shared storage (Bartholdi 

and Hackman, 2019). Dedicated storage has already been described earlier. Shared 

storage has much more in common with random or the closest-open location 

assignments. When company utilises the shared storage, then every product can be 

stored in many locations and every location can hold any number of products.  

 

Products can be scattered around the whole warehouse (if pure random or closest-open 

location strategies are used) or around all locations belonging to specific classes (if 

the ABC-class storage assignment is used in combination with random or closest-open 

location ones). The advantages and disadvantages of the random storage system are 

roughly the same as in the case of random and closest-open location ones. The space 

utilisation is good, but locations of products change constantly with time, what makes 

impossible to pickers to memorise them. Utilisation of such system forces to satisfy 

at least three requirements: application of warehouse management system, discipline 

amongst the pickers and a method of selection of locations to be visited during order 

picking. 

 

Problem of selection of locations when a company utilises shared storage type has 

little coverage in literature. Bartholdi and Hackman (2019) stated that in case of shared 

storage selection of locations from which ordered products are to be picked is often 

connected with certain trade-offs. The picker can pick product from the most 

convenient (i.e., being located close to the I/O point or fully satisfying the demand) 
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locations – such approach saves time and labour but results in small quantities of 

products that remain in many locations. On the other hand, we can select the least-

filled locations – this allows to clean them from small amounts of products, but 

increases the route length and order picking time (Dmytrów, 2018). When 

deteriorating items are stored in a warehouse, the main criterion of selection of 

location will be storage time – the locations in which picked products are stored the 

longest, will be selected first – other criteria are much less important in this case. 

Summing up, we can distinguish four take-out strategies (Gudehus and Kotzab, 2012): 

 

• FIFO (First-In-First-Out) – units will be picked accordingly on their arrival 

to the warehouse; 

• priority of partial units – locations with the lowest content of the product will 

be accessed first, even if it increases labour; 

• quantity adjustment – the picker retrieves the product from the locations 

where the requested quantity is fully satisfied even if it generates additional 

low amounts of products in the locations; 

• taking the access unit – if the amount of the product on a given location 

exceeds or is equal to the requested quantity, the complete unit is taken after 

the excess quantity is removed. 

 

As we can see, there are three criteria that can be applied in these strategies. The first 

one takes into consideration storage time, remaining three strategies consider the level 

of demand satisfaction. The last strategy also considers complete access units of a 

product. Of course, taking only one criterion in every strategy does not cover all 

possibilities of distinguishing locations. For example, when a company uses the first 

strategy, it may happen that there will be at least two locations with picked product 

with the same storage time. Other criteria should be considered, for example demand 

satisfaction or distance from the I/O point.  

 

Therefore, in order to differentiate between locations, where the same, picked 

products are placed, we must consider multi-criteria decision-making approach. It can 

be done by transforming the criteria into the composite measure. Its value can be 

understood as the location’s attractiveness. It is calculated on the basis of weighed 

distance of the analysed location from the so-called pattern (the perfect alternative or, 

in this case, perfect location) and anti-pattern (the worst alternative or, in this case, 

worst location). In order to calculate the composite measure, values of the criteria 

must be normalised. 

 

The aim of the research was to find the best criteria normalisation method in order to 

minimise the picker’s route length and order picking time. The research was based on 

the simulation methods – orders were generated randomly. For every criteria’s 

combination of weights and normalisation method 1000 orders were generated. The 

best combination of weights and normalisation method would be the one(s) with 

minimal route length and order picking time. 
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2. Research Methodology 

 

In the first stage of the analysis the criteria, by which the locations were described, 

were defined. They were as follows: 

 

• distance from the I/O point (𝑥1), 

• degree of demand satisfaction (𝑥2), 

• number of other picked products in the proximity of the analyzed location 

(𝑥3). 

 

The first criterion is the loss-type one. It is measured on the ratio scale in conceptual 

unit, which is the shelf width. It is calculated by means the taxicab geometry, by means 

of the following formula: 

 

𝑥1 = 𝑛𝑎𝑖𝑠𝑙𝑒 + 𝑛𝑠ℎ𝑒𝑙𝑓 (1) 

 

where 𝑛𝑎𝑖𝑠𝑙𝑒 – picking aisle number of an analysed location, 𝑛𝑠ℎ𝑒𝑙𝑓 – shelf number of 

an analysed location. The original formula for the taxicab geometry simplifies to the 

one, presented by the formula (1) because with the assumed warehouse layout (the 

rectangular one with parallel picking aisles and two orthogonal cross aisles) the 

coordinates of the I/O point (aisle and shelf numbers) are assumed to be equal 0. It 

should be emphasised that the distance of the analysed location from the I/O point has 

nothing in common with the distances of the location from the pattern and anti-pattern, 

used to calculate the composite variable. 

 

The second criterion is also measured on the ratio scale. It is the profit-type criterion, 

calculated by means of the following formula: 

 

𝑥2 = {
𝑙

𝑧
, if 𝑧 > 𝑙

1 if 𝑙 ≥ 𝑧

 (2) 

 

where l – number of units of the picked product in the analysed location and z – 

demand for the picked product. 

 

Values of the second criterion are in the interval (0, 1. If for example the demand for 

the picked product is 100 units and it is placed in two locations and if the number of 

units in the first one is 100 and 150 in the second, both locations have the same 

attractiveness with respect to this criterion (its value in both cases equals 1). 

 

The third criterion, or the number of other picked products in the proximity of the 

analysed location, is the profit-type one and measured on the ratio scale. The term 

“proximity” can be understood in different ways. It can be the same rack, the same 

shelf, the same isle or even the same sector in the warehouse. Selection of the 
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appropriate approach is very important because if we set this proximity very narrowly 

(as the same rack or the same shelf), it may happen that in most situations there will 

be no other picked products in the proximity of the analysed location, so in most 

situations this criterion will not differentiate locations. On the other hand, if we set the 

proximity too widely (as the whole sector), there might be in most cases the situation 

that almost every location will have all other products in the proximity, thus this 

criterion will also not differentiate locations. In the research, the proximity of the 

analysed location are all locations placed on the shelves within one picking aisle. 

 

After selection of the criteria, the next step is to weight them, because the composite 

variable, which is created on their basis, is based on the weighed distance from the 

pattern and anti-pattern. If there is no substantive reason to do so, weights should be 

equal. In our case, however, there is a reason to weight the criteria. This reason is 

minimisation of order picking time and route. There are many methods of weighing 

the criteria. One of them is based on the criteria’s variability. Criteria with high 

variability should have higher weight because they differentiate analysed alternatives 

to much higher degree than criteria with small variability. Another method of 

assigning weights is based on the correlation between criteria and the meta-criterion. 

Higher correlation (of course in its absolute value) results in higher weight. Another 

method is based on the Shannon’s entropy (Lotfi and Fallahnejad, 2010) or the AHP 

method (Saaty, 1980). In case of presented analysis, it was difficult to assume any of 

the above-presented method because the orders were generated, and the values of the 

criteria changed constantly. Therefore, it was assumed that combinations of weights 

were fixed and for such fixed combinations the simulations were performed. Various 

fixed combinations of weights were used. In order to consider wide spectrum of 

weights, it was assumed that weights for each criterion changed by 0.1. The 

distribution of weights between the criteria is presented in Table 2. 

 

Table 2. Distribution of weights over the criteria 
Weight type Criterion 1 Criterion 2 Criterion 3 

Equal 0.(3) 0.(3) 0.(3) 

Extreme dominance 0.8 0.1 0.1 

Strong dominance 0.7 0.2 0.1 

Significant dominance 1 0.6 0.3 0.1 

Significant dominance 2 0.6 0.2 0.2 

Medium dominance 1 0.5 0.4 0.1 

Medium dominance 2 0.5 0.3 0.2 

Small dominance 1 0.4 0.4 0.2 

Small dominance 2 0.4 0.3 0.3 

Source: Own elaboration. 

 

The first combination, with equal weights, was used as the reference. The second 

weight type presents the extreme dominance of one criterion over the remaining ones 

(one criterion is eight times more important than the remaining ones). The third type 

presents strong dominance, etc. The last type, small dominance 2, reflects the situation 

close to the first one. Application of the vectors presented in Table 2 for all criteria 
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(for example the second one will result in: [0.8 0.1 0.1], [0.1 0.8 0.1] [0.1 0.1 0.8]) 

gives a total of 37 combinations of weights. They are presented in Table A1 in the 

Appendix. 

  

Having specified the criteria and the system of weights, the next step is calculation of 

the composite variable that measures the weighed distances of analysed location from 

the pattern and anti-pattern. There are many multi-criteria decision-making methods 

that are based on the idea of calculation of the composite measure. Among them, the 

following can be distinguished: COPRAS (Complex Proportional Assessment of 

Alternatives), SAW (Simple Additive Weighting), VIKOR, TOPSIS (Technique for 

Order Preference by Similarity to Ideal Solution) and many others (Saaty and Ergu, 

2015). The TOPSIS method was selected in the research. The main reason for its 

selection was its simplicity and popularity. 

 

Every product in the order was considered separately. For each product all locations, 

where it was placed, were considered. Every location, where the analysed product was 

placed, was described by appropriate values of all three criteria. The steps of the 

calculation of the synthetic measure by means of the TOPSIS method are as follows 

(Hwang and Yoon, 1981): 

 

1. The values of each criterion were normalised. 

2. The pattern (minimum values for the loss-type criteria and maximum for the 

profit-type criteria) and anti-pattern (maximum values for the loss-type criteria 

and minimum for the profit-type criteria) were calculated. 

3. The weighed distances of each i-th alternative (location) from the pattern (𝑑𝑖0
+ ) 

and anti-pattern (𝑑𝑖0
− ) were calculated by means of the Euclidean metrics. 

4. On the basis of the distances from the pattern and anti-pattern, the synthetic 

measure for i-th alternative (location) was calculated: 

 

𝑞𝑖 =
𝑑𝑖0

−  

𝑑𝑖0
− + 𝑑𝑖0

+  (3) 

 

5. The qi values were sorted in a descending order. 

6. The highest-ranking locations were selected, until the demand was satisfied. 

 

The first step of the TOPSIS method consists in normalisation of criteria. There are 

many normalisation methods that can be divided into three main groups: 

standardisation, feature scaling and quotient transformations. In general, 

normalisation formula can be written as follows (Walesiak, 2018): 

 

𝑧𝑖𝑗 = 𝑏𝑗𝑥𝑖𝑗 + 𝑎𝑖𝑗 =
1

𝐵𝑗
𝑥𝑖𝑗 −

𝐴𝑗

𝐵𝑗
 (𝑏𝑗 > 0) (4) 

 

where: 𝑥𝑖𝑗 – value of j-th criterion in i-th alternative (location), 𝑧𝑖𝑗 – normalised value 
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of j-th criterion in i-th alternative (location), 𝐴𝑗 – shift parameter to arbitrary zero for 

j-th variable, 𝐵𝑗 – scale parameter for j-th variable, 𝑎𝑗 = −
𝐴𝑗

𝐵𝑗
, 𝑏𝑗 =

1

𝐵𝑗
. For linear 

transformations of variables, we can obtain 18 normalisation methods. They are 

presented in Table A2 in the Appendix. Formulas n1 and n2 are standard scores, based 

on arithmetic mean and median, respectively. Formulas n3, n3a and n4 are various 

variants of feature scaling. Formula n4 is also known as the min-max normalisation. 

Formulas n6, n6a, n7, m8, n9, n9a, n10 and n11 are the quotient transformations. 

Formula n11 was originally used by Hwang and Yoon in the TOPSIS method. 

Generally, there is arbitrariness in selection of normalisation method. The main 

limitation is scale, on which criteria are measured. If they are measured on the ratio 

scale, then all 18 formulas can be used.  

 

For criteria measured on the interval scale, formulas n6, n6a, n7, m8, n9, n9a, n10 and 

n11 (e.g. quotient transformations) cannot be used. In our case all criteria are measured 

on the ratio scale, therefore all formulas can be used. It is worth noting that there are 

possible situations when some (and sometimes all) normalisation formulas cannot be 

used. First situation is when values of all criteria are equal 0 (such situation may 

happen in case of the third criterion – number of other picked products in the proximity 

of the analysed location). In such case we cannot apply any formula. The workaround 

to such situation is assuming that normalised values of the criterion are equal 0 and it 

does not influence the value of composite measure. Other troublesome situation is 

when all values of given criterion are the same (but different from 0). In such case we 

can apply the formulas n8, n9, n9a, n10 and n11. For all other formulas, previously 

described workaround must be used. 

 

The steps 1-6 of the TOPSIS method were repeated for every product in the order. 

After selection of locations for all products in the order, the locations were listed, and 

the picker’s route was designated. The problem of designation of the picker’s route is 

widely considered in the literature. There are several methods of designating the 

picker’s route in the picker-to-parts warehouse (Le-Duc, 2005): 

 

• optimal, 

• s-shape or traversal, 

• return, 

• midpoint, 

• largest gap, 

• composite, 

• combined. 

 

The optimal method of designation the picker’s route allows to obtain the route with 

minimal length. This method is based on the modified Travelling Salesman Problem. 

It was first applied for the single-block rectangular warehouse with two cross aisles 

by Ratliff and Rosenthal (1983). Its extension to the more number of cross aisles was 
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done by Roodbergen and De Koster (2001). Although it is always possible to obtain 

the optimal solution, thus optimal route length, optimal strategy is rarely used in 

practice. There are several reasons for this. Firstly, for large orders procedure of 

finding this solution is time-consuming. Secondly, obtained route often seems 

illogical to the pickers that tend to deviate from it. Thirdly, it does not consider aisle 

congestion and usual moving direction. Therefore, instead of using the optimal routing 

strategy, heuristic methods are usually used. Two most popular ones are the s-shape 

and return heuristics (Pan et al., 2014). In-depth comparison of results obtained for 

various routing heuristics was done for example by Tarczyński (2012). 

 

In the research the classical, single-block rectangular warehouse with two cross aisles 

was assumed. The products were stored with the ABC-class assignment. Within each 

class random storage was used. When the ABC-class storage assignment is used, 

various layouts can be applied. The most popular ones are within aisle, across aisle, 

diagonal and perimeter (Kofler, 2014). Initial calculations had proved that amongst 

all combinations of routing heuristics and warehouse layout generally good results 

were obtained for the diagonal layout and return routing heuristics, therefore this 

combination was used in the research. The diagonal layout of a warehouse is presented 

on Figure 1 and the return heuristics is presented on Figure 2. 

 

Figure 1. Warehouse with diagonal layout 

 
Source: Own elaboration. 

 

The return heuristics assumes that the picker enters the first aisle, where the picked 

products are placed and goes the furthest to pick all products from locations lying in 

that aisle and goes back, leaving the aisle from the same end. Then he/she goes to the 

second aisle, where the picked products are placed and so on. After visiting locations 

lying in the last visited aisle, the picker travels back to the I/O point. 

 

Having selected criteria, combinations of weights, multi-criteria decision-making 

technique, warehouse layout and routing heuristics the orders were generated by 

means of the simulation methods. The simulation experiment was based on the 

following pattern: 

B C C C C C C C C C

B B C C C C C C C C

B B B C C C C C C C

B B B B C C C C C C

A B B B B C C C C C

A A B B B B C C C C

A A A B B B C C C C

A A A A B B B C C C

A A A A A B B B C C

A A A A A A B B B C

I/O
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Figure 2. The return heuristics 

 
Source: Own elaboration. 

 

1. A simple, rectangular warehouse with 1,000 locations, two cross aisles, 20 pick 

aisles was assumed. Every rack contained 25 locations. 

2. The warehouse utilised the random and ABC-class storage assignment with 

diagonal layout. 

3. Every order consisted of ten products. 

4. Every product was stored in four locations. 

5. Available amounts of products in each location varied from a single unit to the 

amount that satisfied the demand twice. 

6. For all combinations of weights and normalisation method, 1,000 orders were 

generated and by means of the TOPSIS method, locations were selected. 

7. After the selection of locations, the picker’s route by means of the return 

heuristics was designated. 

8. For each route, its length was measured, and the order-picking time was 

calculated. The order-picking time was the sum of the picker’s movement and 

collection time. It was assumed that the time of passing the distance unit (shelf 

width) was 2 seconds and the product collection time from the location – 10 

seconds. 

9. For 37 combinations of weights and 18 normalisation methods, a total 666,000 

simulations were done. 

 

3. Empirical Results  

 

For every normalisation method the best results (shortest route lengths) were obtained 

when big weight was put on the degree of demand satisfaction (sometimes also with 

the distance from the I/O point) and low weight on the third criterion – number of 

other picked products in the proximity of the analysed location. And vice versa – for 

every normalisation method the worst results were obtained when big weight was put 

on the third criterion and small – on the second one. When comparing the best results 

for every normalisation method, the best one turned to be the n12. For this method 

and the combination of weights [0.1 0.8 0.1] was 184.93 units and was by 3% shorter 

than for the worst one (n7). For the worst combinations of weights this difference was 
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equal to 3,56% and for benchmark combination – 5,17%. The best results (for n12 

normalisation method and vector of weights [0.1 0.8 0.1]) were by 12.3% better than 

the worst results (for n4 normalisation method and vector of weights [0.4 0.1 0.5]).  

 

Generally, when we apply the best (or the worst, but we will more likely consider only 

the best combinations, i.e. these, for which route lengths are the shortest) 

combinations of weights, the differences between particular normalisation methods 

are very small. Mean route lengths for the best, the worst and benchmark combinations 

of weights across all normalisation methods are presented in Table 3. 

 

Table 3. Results of the experiment – route length 

Method 
Vector of weights 

/route length 

Combination of weights 

benchmark the best the worst 

n1 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.5 0.1 0.4] 

route length 200.086 186.912 209.824 

n2 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.5 0.1 0.4] 

route length 202.956 189.670 207.794 

n3 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.1 0.1 0.8] 

route length 193.732 188.886 209.454 

n3a 
weights [0.(3) 0.(3) 0.(3)] [0.3 0.5 0.2] [0.3 0.1 0.6] 

route length 197.296 186.260 206.802 

n4 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.4 0.1 0.5] 

route length 197.032 185.082 210.546 

n5 
weights [0.(3) 0.(3) 0.(3)] [0.3 0.6 0.1] [0.7 0.1 0.2] 

route length 196.380 187.870 208.120 

n5a 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.7 0.1 0.2] 

route length 195.952 185.912 207.856 

n6 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.4 0.1 0.5] 

route length 192.556 185.384 209.846 

n6a 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.4 0.1 0.5] 

route length 196.426 189.694 207.734 

n7 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.3 0.1 0.6] 

route length 202.240 190.774 210.436 

n8 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.7 0.1 0.2] 

route length 196.134 185.796 207.406 

n9 
weights [0.(3) 0.(3) 0.(3)] [0.5 0.4 0.1] [0.1 0.2 0.7] 

route length 199.902 187.484 206.844 

n9a 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.8 0.1 0.1] 

route length 192.458 187.448 203.048 

n10 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.2 0.2 0.6] 

route length 198.086 188.028 205.886 

n11 
weights [0.(3) 0.(3) 0.(3)] [0.5 0.4 0.1] [0.4 0.1 0.5] 

route length 197.432 188.594 204.862 

n12 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.7 0.1 0.2] 

route length 196.498 184.930 207.940 

n12a 
weights [0.(3) 0.(3) 0.(3)] [0.4 0.5 0.1] [0.5 0.1 0.4] 

route length 194.332 187.370 207.386 

n13 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.1 0.2 0.7] 

route length 194.718 185.022 208.812 

Note: The best values were bolded and underlined, the worst values were bolded. 

Source: Own elaboration. 
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Mean order picking times for the best, the worst and benchmark combinations of 

weights across all normalisation methods are presented in Table 4. 

 

Table 4. Results of the experiment – order picking time 

Method 
Vector of weights 

/order picking time 

Combination of weights 

benchmark the best the worst 

n1 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.5 0.1 0.4] 

order picking time 536.322 484.254 580.388 

n2 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.5 0.1 0.4] 

order picking time 545.292 498.440 573.228 

n3 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.6 0.1 0.3] 

order picking time 522.094 489.952 580.458 

n3a 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.3 0.1 0.6] 

order picking time 529.522 483.444 572.844 

n4 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.4 0.1 0.5] 

order picking time 528.364 483.114 581.482 

n5 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.7 0.1 0.2] 

order picking time 528.26 488.088 576.340 

n5a 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.7 0.1 0.2] 

order picking time 527.674 484.844 578.002 

n6 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.4 0.1 0.5] 

order picking time 519.692 482.828 580.332 

n6a 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.4 0.1 0.5] 

order picking time 530.902 498.538 572.828 

n7 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.3 0.1 0.6] 

order picking time 548.440 496.278 580.472 

n8 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.7 0.1 0.2] 

order picking time 522.818 481.792 572.422 

n9 
weights [0.(3) 0.(3) 0.(3)] [0.3 0.6 0.1] [0.6 0.1 0.3] 

order picking time 531.074 491.834 568.894 

n9a 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.8 0.1 0.1] 

order picking time 515.366 487.896 561.926 

n10 
weights [0.(3) 0.(3) 0.(3)] [0.2 0.7 0.1] [0.6 0.1 0.3] 

order picking time 527.782 489.826 565.798 

n11 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.6 0.1 0.3] 

order picking time 526.484 490.372 567.604 

n12 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.7 0.1 0.2] 

order picking time 528.836 479.370 577.030 

n12a 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.5 0.1 0.4] 

order picking time 524.044 488.214 574.992 

n13 
weights [0.(3) 0.(3) 0.(3)] [0.1 0.8 0.1] [0.7 0.1 0.2] 

order picking time 525.276 481.504 576.136 

Note: The best values were bolded and underlined, the worst values were bolded. 

Source: Own elaboration. 

 

For the order picking time, the situation is similar as for the route length. The shortest 

time (just less than 8 minutes) was obtained for normalisation method n12 and vector 

of weights [0.1 0.8 0.1]. The longest time – 9 min 42 s – was obtained for 

normalisation method n4 and vector of weights [0.4 0.1 0.5] (the difference was 

17.56% in favour of the best situation). Amongst the best combinations of weights, 

the order picking time for the best normalisation method was by 3,8% shorter than for 

the worst method (n6a). Amongst the worst combinations of weights, the difference 
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between the results for best normalisation method (n9a) was by 3,36% shorter than 

for the worst one (n4). For the benchmark combination the difference between the best 

and the worst normalisation methods was about 6%. The distributions of the best 

results (obtained for normalisation method n12 and vector of weights [0.1 0.8 0.1]), 

the worst results (obtained for normalisation method n4 and vector of weights [0.4 0.1 

0.5]) and the results being the benchmark (assumed as the best for the benchmark 

combination of weights – they were obtained for the normalisation method n9a) are 

presented on Figures 3 and 4. 

 

Figure 3. Empirical cumulative distribution function of route lengths for the best, the 

worst and the benchmark results 

 
Source: Own elaboration 

 

As seen from the Figure 3, the distribution of route length for analysed three situations 

behaved with accordance to their mean values. Empirical cumulative distribution 

function was the steepest for the best situation – the route lengths were the shortest. 

For the worst situation, the opposite occurred. Benchmark results were placed in the 

middle. The differences between route lengths were checked by means of Kruskal-

Wallis H test (the Levene’s test rejected the hypothesis about the equality of 

variances) (Aczel and Sounderpandian, 2009). At the significance level 0.01 the null 

hypothesis had to be rejected. A post-hoc pairwise comparisons Dunn’s test (Aczel 

and Sounderpandian, 2009) indicated that order picking routes were statistically 

different among all three situations. 

 

Figure 4. Empirical cumulative distribution function of order picking times for the 

best, the worst, and the benchmark results 

 
Source: Own elaboration. 
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The courses of empirical cumulative distribution functions for analysed three 

situations were very similar to those for the route lengths. Again, the slope of the curve 

for the best situation was the highest and the opposite for the worst. As for the route 

length, also in case of order picking time the Kruskal-Wallis test indicated that for all 

three analysed situations the differences were statistically significant. 

 

4. Conclusions 

 

In the paper, the impact of method of criteria’s normalisation on order picking route 

and time was analysed. Regardless of the normalisation method, the best results (the 

shortest order picking route and time) were obtained when high weight was put on the 

second criterion – degree of demand satisfaction, sometimes with the first criterion – 

location’s distance from the I/O point. Weight put on the third criterion – number of 

other picked products in the proximity of the analysed location – should be low 

(Tables 3 and 4). Both for the route length and order picking time the best results were 

obtained when n12 normalisation method was applied and vector of weights [0.1 0.8 

0.1] was used. It is hard to find the unequivocally the best normalisation methods. In 

general, quotient inversions generally yielded slightly worse results than standard 

scores and feature scaling. On the other hand, several normalisation methods (n8, n9, 

n9a, n10 and n11) can be applied in more situations – when the values of all values of 

a criterion are the same, different from 0. Therefore, despite the fact of slightly worse 

results it is wise to recommend one of these methods. 

 

Presented approach is quite versatile – it can be easily adopted to larger number of 

criteria. When we consider previously discussed take-out strategies, obtained results 

indicate that the quantity adjustment approach was used. By means of presented in the 

research approach other take-out strategies can be considered. In order to apply the 

FIFO strategy, the storage time criterion with the highest weight should be introduced. 

If we wish to apply the “priority of partial units” strategy, the second criterion should 

be treated as the loss-type, instead of the profit-type (and, of course, it should have 

high weight). In order to apply the “taking the access unit” strategy, a new criterion 

describing the number of complete access units in locations. 

 

Future area of the research will introduce the application of presented approach for 

high-storage warehouse and various take-out strategies. 
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Appendix: 

 

Table A1. Combinations of weights 

Name 
Vector of 

weights 
Name 

Vector of 

weights 

C1 
[0.(3) 0.(3) 

0.(3)] 
C20 

[0.3 0.5 0.2] 

C2 [0.1 0.1 0.8] C21 [0.3 0.3 0.4] 

C3 [0.1 0.8 0.1] C22 [0.3 0.4 0.3] 

C4 [0.1 0.2 0.7] C23 [0.4 0.1 0.5] 

C5 [0.1 0.7 0.2] C24 [0.4 0.5 0.1] 

C6 [0.1 0.3 0.6] C25 [0.4 0.2 0.4] 

C7 [0.1 0.6 0.3] C26 [0.4 0.4 0.2] 

C8 [0.1 0.4 0.5] C27 [0.4 0.3 0.3] 

C9 [0.1 0.5 0.4] C28 [0.5 0.1 0.4] 

C10 [0.2 0.1 0.7] C29 [0.5 0.4 0.1] 

C11 [0.2 0.7 0.1] C30 [0.5 0.2 0.3] 

C12 [0.2 0.2 0.6] C31 [0.5 0.3 0.2] 

C13 [0.2 0.6 0.2] C32 [0.6 0.1 0.3] 

C14 [0.2 0.3 0.5] C33 [0.6 0.3 0.1] 

C15 [0.2 0.5 0.3] C34 [0.6 0.2 0.2] 

C16 [0.2 0.4 0.4] C35 [0.7 0.1 0.2] 

C17 [0.3 0.1 0.6] C36 [0.7 0.2 0.1] 

C18 [0.3 0.6 0.1] C37 [0.8 0.1 0.1] 

C19 [0.3 0.2 0.5]   

Source: Own elaboration. 
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Table A2. Normalization methods 

Method Formula Method Formula 

n1 
𝑥𝑖𝑗 − �̅�𝑗

𝑠𝑗
 n7 

𝑥𝑖𝑗

𝑟𝑗
 

n2 
𝑥𝑖𝑗 − 𝑀𝑒𝑗

1,4826 ⋅ 𝑀𝐴𝐷𝑗
 n8 

𝑥𝑖𝑗

max
𝑖

{𝑥𝑖𝑗}
 

n3 
𝑥𝑖𝑗 − �̅�𝑗

𝑟𝑗
 n9 

𝑥𝑖𝑗

�̅�𝑗
 

n3a 
𝑥𝑖𝑗 − 𝑀𝑒𝑗

𝑟𝑗
 n9a 

𝑥𝑖𝑗

𝑀𝑒𝑗
 

n4 
𝑥𝑖𝑗 − min

𝑖
{𝑥𝑖𝑗}

𝑟𝑗
 n10 

𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 

n5 
𝑥𝑖𝑗 − �̅�𝑗

max
𝑖

|𝑥𝑖𝑗 − �̅�𝑗|
 n11 

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 

n5a 
𝑥𝑖𝑗 − 𝑀𝑒𝑗

max
𝑖

|𝑥𝑖𝑗 − 𝑀𝑒𝑗|
 n12 

𝑥𝑖𝑗 − �̅�𝑗

√∑ (𝑥𝑖𝑗 − �̅�𝑗)
2𝑚

𝑖=1

 

n6 
𝑥𝑖𝑗

𝑠𝑗
 n12a 

𝑥𝑖𝑗 − 𝑀𝑒𝑗

√∑ (𝑥𝑖𝑗 − 𝑀𝑒𝑗)
2𝑚

𝑖=1

 

n6a 
𝑥𝑖𝑗

𝑀𝐴𝐷𝑗
 n13 

𝑥𝑖𝑗 −
max

𝑖
{𝑥𝑖𝑗} + min

𝑖
{𝑥𝑖𝑗}

2
𝑟𝑗

2

 

Source: (Walesiak, 2018) 

Notes: 

𝑥𝑖𝑗  – value of j-th criterion in i-th alternative (location), 

�̅�𝑗  – arithmetic mean of j-th criterion, 

𝑀𝑒𝑗 – median of j-th criterion, 

𝑠𝑗  – standard deviation of j-th criterion, 

𝑟𝑗 – range of j-th criterion, 

𝑀𝐴𝐷𝑗 – median absolute deviation of j-th criterion, 

min
𝑖

{𝑥𝑖𝑗} – minimal value of j-th criterion, 

max
𝑖

{𝑥𝑖𝑗} – maximal value of j-th criterion. 

 

  

  


